Citation: | PAN Chao, WANG Xiaofeng. Research progress on application of chitosan nanoparticles in drug delivery system[J]. Journal of Clinical Medicine in Practice, 2021, 25(4): 116-120. DOI: 10.7619/jcmp.20201738 |
[1] |
ZOU L Q, PENG S F, LIU W, et al. A novel delivery system dextran sulfate coated amphiphilic chitosan derivatives-based nanoliposome: Capacity to improve in vitro digestion stability of (-)-epigallocatechin gallate[J]. Food Res Int, 2015, 69: 114-120. doi: 10.1016/j.foodres.2014.12.015
|
[2] |
ZHANG L P, XI L, SHI G, et al. Reduction-responsive zwitterionic nanogels based on carboxymethyl chitosan for enhancing cellular uptake in drug release[J]. Colloid Polym Sci, 2016, 294(3): 629-637. doi: 10.1007/s00396-015-3822-2
|
[3] |
MATHIYAZHAKAN M, WIRAJA C, XU C J. A concise review of gold nanoparticles-based photo-responsive liposomes for controlled drug delivery[J]. Nano-Micro Lett, 2017, 10(1): 1-10.
|
[4] |
HÖRMANN K, ZIMMER A. Drug delivery and drug targeting with parenteral lipid nanoemulsions-A review[J]. J Control Release, 2016, 223: 85-98. doi: 10.1016/j.jconrel.2015.12.016
|
[5] |
CALVO P, REMUÑÁN-LÓPEZ C, VILA-JATO J L, et al. Novel hydrophilic chitosan-polyethylene oxide nanoparticles as protein carriers[J]. J Appl Polym Sci, 1997, 63(1): 125-132. doi: 10.1002/(SICI)1097-4628(19970103)63:1<125::AID-APP13>3.0.CO;2-4
|
[6] |
AHMED S, IKRAM S. Chitosan&its derivatives: A review in recent innovations[J]. Int J Pharm Sci Res, 2015, 6(1): 14-30.
|
[7] |
SHI Y F, XIONG Z P, LU X F, et al. Novel carboxymethyl chitosan-graphene oxide hybrid particles for drug delivery[J]. J Mater Sci: Mater Med, 2016, 27(11): 1-9. http://www.ncbi.nlm.nih.gov/pubmed/27709459
|
[8] |
YU J S, BING S T, LUO M H, et al. Carboxymethyl-hexanoyl chitosan nanodroplets for ultrasonic imaging and drug delivery to tumor[J]. Curr Pharm Des, 2018, 24(15): 1682-1688. doi: 10.2174/1381612824666180515122836
|
[9] |
QU D, JIAO M, LIN H, et al. Anisamide-functionalized pH-responsive amphiphilic chitosan-based paclitaxel micelles for Sigma-1 receptor targeted prostate cancer treatment[J]. Carbohydr Polym, 2020, 229: 115498. doi: 10.1016/j.carbpol.2019.115498
|
[10] |
DE OLIVEIRA PEDRO R, GOYCOOLEA F M, PEREIRA S, et al. Synergistic effect of quercetin and pH-responsive DEAE-chitosan carriers as drug delivery system for breast cancer treatment[J]. Int J Biol Macromol, 2018, 106: 579-586. doi: 10.1016/j.ijbiomac.2017.08.056
|
[11] |
LIU Q, LI Y, YANG X, et al. O-Carboxymethyl chitosan-based pH-responsive amphiphilic chitosan derivatives: Characterization, aggregation behavior, and application[J]. Carbohydr Polym, 2020, 237: 116112. doi: 10.1016/j.carbpol.2020.116112
|
[12] |
WANG J J, ZENG Z W, XIAO R Z, et al. Recent advances of chitosan nanoparticles as drug carriers[J]. Int J Nanomedicine, 2011, 6: 765-774.
|
[13] |
ZHANG N, LI J, JIANG W, et al. Effective protection and controlled release of insulin by cationic beta-cyclodextrin polymers from alginate/chitosan nanoparticles[J]. Int J Pharm, 2010, 393: 212-218. http://europepmc.org/abstract/med/20394813
|
[14] |
KIM J H, KIM Y S, PARK K, et al. Self-assembled glycol chitosan nanoparticles for the sustained and prolonged delivery of antiangiogenic small peptide drugs in cancer therapy[J]. Biomaterials, 2008, 29(12): 1920-1930. doi: 10.1016/j.biomaterials.2007.12.038
|
[15] |
LAI M, WANG J, TAN J, et al. Preparation, complexation mechanism and properties of nano-complexes of Astragalus polysaccharide and amphiphilic chitosan derivatives[J]. Carbohydr Polym, 2017, 161: 261-269. doi: 10.1016/j.carbpol.2016.12.068
|
[16] |
YU X, MU Y, XU M, et al. Preparation and characterization of mucosal adhesive and two-step drug releasing cetirizine-chitosan nanoparticle[J]. Carbohydr Polym, 2017, 173: 600-609. doi: 10.1016/j.carbpol.2017.05.067
|
[17] |
WU M, DONG H, GUO K, et al. Self-assemblied nanocomplexes based on biomimetic amphiphilic chitosan derivatives for protein delivery[J]. Carbohydr Polym, 2015, 121: 115-121. doi: 10.1016/j.carbpol.2014.12.049
|
[18] |
JANG E H, SHIM M K, KIM G L, et al. Hypoxia-responsive folic acid conjugated glycol chitosan nanoparticle for enhanced tumor targeting treatment[J]. Int J Pharm, 2020, 580: 119237. doi: 10.1016/j.ijpharm.2020.119237
|
[19] |
HUANG P, YANG C, LIU J, et al. Improving the oral delivery efficiency of anticancer drugs by chitosan coated polycaprolactone-grafted hyaluronic acid nanoparticles[J]. J Mater Chem B, 2014, 2(25): 4021-4033. doi: 10.1039/C4TB00273C
|
[20] |
WANG T, HOU J H, SU C, et al. Hyaluronic acid-coated chitosan nanoparticles induce ROS-mediated tumor cell apoptosis and enhance antitumor efficiency by targeted drug delivery via CD44[J]. J Nanobiotechnology, 2017, 15(1): 7. doi: 10.1186/s12951-016-0245-2
|
[21] |
MANSOURI A, ABNOUS K, ALIBOLANDI M, et al. Targeted delivery of tacrolimus to T cells by pH-responsive aptamer-chitosan-poly (lactic-co-glycolic acid) nanocomplex[J]. J Cell Physiol, 2019, 234(10): 18262-18271. doi: 10.1002/jcp.28458
|
[22] |
KEAN T, THANOU M. Biodegradation, biodistribution and toxicity of chitosan[J]. Adv Drug Deliv Rev, 2010, 62(1): 3-11. doi: 10.1016/j.addr.2009.09.004
|
[23] |
SUZUKI Y S, MOMOSE Y, HIGASHI N, et al. Biodistribution and kinetics of holmium-166-chitosan complex (DW-166HC) in rats and mice[J]. J Nucl Med, 1998, 39(12): 2161-2166. http://www.ncbi.nlm.nih.gov/pubmed/9867162
|
[24] |
BANERJEE T, SINGH A K, SHARMA R K, et al. Labeling efficiency and biodistribution of Technetium-99m labeled nanoparticles: interference by colloidal tin oxide particles[J]. Int J Pharm, 2005, 289(1/2): 189-195. http://so.med.wanfangdata.com.cn/ViewHTML/PeriodicalPaper_JJ029686618.aspx
|
[25] |
RICHARDSON S C, KOLBE H V, DUNCAN R. Potential of low molecular mass chitosan as a DNA delivery system: biocompatibility, body distribution and ability to complex and protect DNA[J]. Int J Pharm, 1999, 178(2): 231-243. doi: 10.1016/S0378-5173(98)00378-0
|
[26] |
GUPTA A K. Synthesis and surface engineering of iron oxide nanoparticles for biomedical applications[J]. Biomaterials, 2005, 26: 3995-4021. doi: 10.1016/j.biomaterials.2004.10.012
|
[27] |
ZHANG C, QU G, SUN Y, et al. Biological evaluation of N-octyl-O-sulfate chitosan as a new nano-carrier of intravenous drugs[J]. Eur J Pharm Sci, 2008, 33(4/5): 415-423. http://www.sciencedirect.com/science/article/pii/S0928098708000316
|
[28] |
MINGMING Y, YUANHONG W, FUGANG M, et al. Pharmacokinetics, tissue distribution and excretion study of fluoresceinlabeled PS916 in rats[J]. Curr Pharm Biotechnol, 2017, 18(5): 391-399.
|
[29] |
JIANG L Q, WANG T Y, WANG Y, et al. Co-disposition of chitosan nanoparticles by multi types of hepatic cells and their subsequent biological elimination: the mechanism and kinetic studies at the cellular and animal levels[J]. Int J Nanomedicine, 2019, 14: 6035-6060. doi: 10.2147/IJN.S208496
|
[30] |
SAHARIAH P, MÁSSON M. Antimicrobial chitosan and chitosan derivatives: a review of the structure-activity relationship[J]. Biomacromolecules, 2017, 18(11): 3846-3868. doi: 10.1021/acs.biomac.7b01058
|
[31] |
KEAN T, ROTH S, THANOU M. Trimethylated chitosans as non-viral gene delivery vectors: cytotoxicity and transfection efficiency[J]. J Control Release, 2005, 103(3): 643-653. doi: 10.1016/j.jconrel.2005.01.001
|
[32] |
SCHIPPER N G, VÅRUM K M. Chitosans as absorption enhancers for poorly absorbable drugs. 1: Influence of molecular weight and degree of acetylation on drug transport across human intestinal epithelial (Caco-2) cells[J]. Pharm Res, 1996, 13: 1686-1692. doi: 10.1023/A:1016444808000
|
[33] |
PEREIRA L A, DA SILVA REIS L, BATISTA F A, et al. Biological properties of chitosan derivatives associated with the ceftazidime drug[J]. Carbohydr Polym, 2019, 222: 115002. doi: 10.1016/j.carbpol.2019.115002
|
[34] |
THAI H, THUY NGUYEN C, THI THACH L, et al. Characterization of chitosan/alginate/lovastatin nanoparticles and investigation of their toxic effects in vitro and in vivo[J]. Sci Rep, 2020, 10(1): 909. doi: 10.1038/s41598-020-57666-8
|
1. |
肖宗清,董翠婷,张杰,刘园园,吴汉利. 维持性血液透析患者衰弱风险预测模型的建立与验证. 临床肾脏病杂志. 2024(04): 265-270 .
![]() | |
2. |
吴云亭,戴艳,彭晓杰. 基于饮食营养干预在儿童慢性肾脏病生长发育中的应用研究. 中国当代医药. 2024(30): 149-152+157 .
![]() | |
3. |
刘鹏程. 罗沙司他与重组人促红细胞生成素治疗维持性血液透析肾性贫血的临床效果比较. 实用临床医药杂志. 2024(24): 121-123+128 .
![]() |