LU Hangcheng, WEI Weiwei, CHEN Jiming, SHI Ruxia. Research progress of targeted therapy for cervical cancer by tumor-associated macrophages[J]. Journal of Clinical Medicine in Practice, 2021, 25(7): 123-127, 132. DOI: 10.7619/jcmp.20201759
Citation: LU Hangcheng, WEI Weiwei, CHEN Jiming, SHI Ruxia. Research progress of targeted therapy for cervical cancer by tumor-associated macrophages[J]. Journal of Clinical Medicine in Practice, 2021, 25(7): 123-127, 132. DOI: 10.7619/jcmp.20201759

Research progress of targeted therapy for cervical cancer by tumor-associated macrophages

More Information
  • Received Date: December 21, 2020
  • Available Online: April 20, 2021
  • Published Date: April 14, 2021
  • Tumor associated macrophages (TAM) are important immune cells in the tumor microenvironment (TME), which can secrete a variety of cytokines to participate in and regulate the biological behavior of cervical cancer (CC). A detailed understanding of the mechanism of TAM affecting the growth and metastasis of CC is the key to the development of targeted therapies. In this paper, the progress of TAM treatment in CC was reviewed in recent years, and the potential therapeutic targets, vaccines and drugs for TAM targeted treatment of CC were mainly discussed, which may provide theoretical basis for the research and development of novel targeted drugs for CC, in order to improve the quality of life and prolong the survival time of patients.
  • [1]
    BRAY F, FERLAY J, SOERJOMATARAM I, et al. Global cancer statistics 2018: GLOBOCAN estimates of incidence and mortality worldwide for 36 cancers in 185 countries[J]. CA Cancer J Clin, 2018, 68(6): 394-424. doi: 10.3322/caac.21492
    [2]
    LIU Y, CAO X T. Characteristics and significance of the pre-metastatic niche[J]. Cancer Cell, 2016, 30(5): 668-681. doi: 10.1016/j.ccell.2016.09.011
    [3]
    KRATOFIL R M, KUBES P, DENISET J F. Monocyte conversion during inflammation and injury[J]. Arterioscler Thromb Vasc Biol, 2017, 37(1): 35-42. doi: 10.1161/ATVBAHA.116.308198
    [4]
    CHANMEE T, ONTONG P, KONNO K, et al. Tumor-associated macrophages as major players in the tumor microenvironment[J]. Cancers (Basel), 2014, 6(3): 1670-1690. doi: 10.3390/cancers6031670
    [5]
    PEDRAZA-BRINDIS E J, SÁNCHEZ-REYES K, HERNÁNDEZ-FLORES G, et al. Culture supernatants of cervical cancer cells induce an M2 phenotypic profile in THP-1 macrophages[J]. Cell Immunol, 2016, 310: 42-52. doi: 10.1016/j.cellimm.2016.07.001
    [6]
    ZHANG M Y, HE Y F, SUN X J, et al. A high M1/M2 ratio of tumor-associated macrophages is associated with extended survival in ovarian cancer patients[J]. J Ovarian Res, 2014, 7: 19-19. doi: 10.1186/1757-2215-7-19
    [7]
    JIANG S T, YANG Y H, FANG M, et al. Co-evolution of tumor-associated macrophages and tumor neo-vessels during cervical cancer invasion[J]. Oncol Lett, 2016, 12(4): 2625-2631. doi: 10.3892/ol.2016.5014
    [8]
    DING H, CAI J, MAO M, et al. Tumor-associated macrophages induce lymphangiogenesis in cervical cancer via interaction with tumor cells[J]. APMIS, 2014, 122(11): 1059-1069. http://med.wanfangdata.com.cn/Paper/Detail/PeriodicalPaper_PM24698523
    [9]
    HEUSINKVELD M, DE VOS VAN STEENWIJK P J, GOEDEMANS R, et al. M2 macrophages induced by prostaglandin E2 and IL-6 from cervical carcinoma are switched to activated M1 macrophages by CD4+ Th1 cells[J]. J Immunol, 2011, 187(3): 1157-1165. doi: 10.4049/jimmunol.1100889
    [10]
    SÁNCHEZ-REYES K, BRAVO-CUELLAR A, HERN?NDEZ-FLORES G, et al. Cervical cancer cell supernatants induce a phenotypic switch from U937-derived macrophage-activated M1 state into M2-like suppressor phenotype with change in Toll-like receptor profile[J]. Biomed Res Int, 2014, 2014: 683068. http://www.ncbi.nlm.nih.gov/pubmed/25309919
    [11]
    SÁNCHEZ-REYES K, PEDRAZA-BRINDIS E J, HERNÁNDEZ-FLORES G, et al. The supernatant of cervical carcinoma cells lines induces a decrease in phosphorylation of STAT-1 and NF-κB transcription factors associated with changes in profiles of cytokines and growth factors in macrophages derived from U937 cells[J]. Innate Immun, 2019, 25(6): 344-355. doi: 10.1177/1753425919848841
    [12]
    HEEREN A M, PUNT S, BLEEKER M C, et al. Prognostic effect of different PD-L1 expression patterns in squamous cell carcinoma and adenocarcinoma of the cervix[J]. Mod Pathol, 2016, 29(7): 753-763. doi: 10.1038/modpathol.2016.64
    [13]
    RÄIHÄM R, PUOLAKKAINEN P A. Tumor-associated macrophages (TAMs) as biomarkers for gastric cancer: a review[J]. Chronic Dis Transl Med, 2018, 4(3): 156-163. http://www.sciencedirect.com/science/article/pii/S2095882X18300112
    [14]
    GUZMÁN-MEDRANO R, ARREOLA-ROSALES R L, SHIBAYAMA M, et al. Tumor-associated macrophages and angiogenesis: a statistical correlation that could reflect a critical relationship in ameloblastoma[J]. Pathol Res Pract, 2012, 208(11): 672-676. doi: 10.1016/j.prp.2012.09.001
    [15]
    CARUS A, LADEKARL M, HAGER H, et al. Tumour-associated CD66b+ neutrophil count is an independent prognostic factor for recurrence in localised cervical cancer[J]. Br J Cancer, 2013, 108(10): 2116-2122. doi: 10.1038/bjc.2013.167
    [16]
    PETRILLO M, ZANNONI G F, MARTINELLI E, et al. Polarisation of tumor-associated macrophages toward M2 phenotype correlates with poor response to chemoradiation and reduced survival in patients with locally advanced cervical cancer[J]. PLoS One, 2015, 10(9): e0136654. doi: 10.1371/journal.pone.0136654
    [17]
    NOY R, POLLARD J W. Tumor-associated macrophages: from mechanisms to therapy[J]. Immunity, 2014, 41(1): 49-61. doi: 10.1016/j.immuni.2014.06.010
    [18]
    Ruffell B, Coussens L M. Macrophages and therapeutic resistance in cancer[J]. Cancer Cell, 2015, 27(4): 462-472. doi: 10.1016/j.ccell.2015.02.015
    [19]
    KIM H J, KIM H J. Current status and future prospects for human papillomavirus vaccines[J]. Arch Pharm Res, 2017, 40(9): 1050-1063. doi: 10.1007/s12272-017-0952-8
    [20]
    HOPPE-SEYLER K, BOSSLER F, BRAUN J A, et al. The HPV E6/E7 oncogenes: key factors for viral carcinogenesis and therapeutic targets[J]. Trends Microbiol, 2018, 26(2): 158-168. doi: 10.1016/j.tim.2017.07.007
    [21]
    CHE Y X, YANG Y, SUO J G, et al. Induction of systemic immune responses and reversion of immunosuppression in the tumor microenvironment by a therapeutic vaccine for cervical cancer[J]. Cancer Immunol Immunother, 2020, 69(12): 2651-2664. doi: 10.1007/s00262-020-02651-3
    [22]
    HAFNER A M, CORTH? SY B, MERKLE H P. Particulate formulations for the delivery of poly(I: C) as vaccine adjuvant[J]. Adv Drug Deliv Rev, 2013, 65(10): 1386-1399. doi: 10.1016/j.addr.2013.05.013
    [23]
    STONE S C, ROSSETTI R A M, ALVAREZ K L F, et al. Lactate secreted by cervical cancer cells modulates macrophage phenotype[J]. J Leukoc Biol, 2019, 105(5): 1041-1054. doi: 10.1002/JLB.3A0718-274RR
    [24]
    DOU Y Y, HUANG D Q, ZENG X Y, et al. All-trans retinoic acid enhances the effect of Fra-1 to inhibit cell proliferation and metabolism in cervical cancer[J]. Biotechnol Lett, 2020, 42(6): 1051-1060. doi: 10.1007/s10529-020-02847-8
    [25]
    RADOGNA F, DICATO M, DIEDERICH M. Cancer-type-specific crosstalk between autophagy, necroptosis and apoptosis as a pharmacological target[J]. Biochem Pharmacol, 2015, 94(1): 1-11. doi: 10.1016/j.bcp.2014.12.018
    [26]
    MENG M B, WANG H H, CUI Y L, et al. Necroptosis in tumorigenesis, activation of anti-tumor immunity, and cancer therapy[J]. Oncotarget, 2016, 7(35): 57391-57413. doi: 10.18632/oncotarget.10548
    [27]
    LI L, YU S, ZANG C Y. Low necroptosis process predicts poor treatment outcome of human papillomavirus positive cervical cancers by decreasing tumor-associated macrophages M1 polarization[J]. Gynecol Obstet Invest, 2018, 83(3): 259-267. doi: 10.1159/000487434
    [28]
    OHSHIKA Y, UMESAKI N, SUGAWA T. Immunomodulating capacity of the monocyte-macrophage system in patients with uterine cervical cancer[J]. Nihon Sanka Fujinka Gakkai Zasshi, 1988, 40: 601-608. http://www.ncbi.nlm.nih.gov/pubmed/3260261
    [29]
    DIJKGRAAF E M, HEUSINKVELD M, TUMMERS B, et al. Chemotherapy alters monocyte differentiation to favor generation of cancer-supporting M2 macrophages in the tumor microenvironment[J]. Cancer Res, 2013, 73(8): 2480-2492. doi: 10.1158/0008-5472.CAN-12-3542
    [30]
    SU Q, FAN M Y, WANG J J, et al. Sanguinarine inhibits epithelial-mesenchymal transition via targeting HIF-1α/TGF-β feed-forward loop in hepatocellular carcinoma[J]. Cell Death Dis, 2019, 10(12): 939. doi: 10.1038/s41419-019-2173-1
    [31]
    PEIXOTO P, ETCHEVERRY A, AUBRY M, et al. EMT is associated with an epigenetic signature of ECM remodeling genes[J]. Cell Death Dis, 2019, 10(3): 205. doi: 10.1038/s41419-019-1397-4
    [32]
    SU S C, LIU Q, CHEN J Q, et al. A positive feedback loop between mesenchymal-like cancer cells and macrophages is essential to breast cancer metastasis[J]. Cancer Cell, 2014, 25(5): 605-620. doi: 10.1016/j.ccr.2014.03.021
    [33]
    LIU N, MA M X, QU N, et al. Low-dose naltrexone inhibits the epithelial-mesenchymal transition of cervical cancer cells in vitro and effects indirectly on tumor-associated macrophages in vivo[J]. Int Immunopharmacol, 2020, 86: 106718. doi: 10.1016/j.intimp.2020.106718
    [34]
    SINGH S V, AJAY A K, MOHAMMAD N, et al. Proteasomal inhibition sensitizes cervical cancer cells to mitomycin C-induced bystander effect: the role of tumor microenvironment[J]. Cell Death Dis, 2015, 6: e1934. doi: 10.1038/cddis.2015.292
    [35]
    CHEN X J, WU S, YAN R M, et al. The role of the hypoxia-Nrp-1 axis in the activation of M2-like tumor-associated macrophages in the tumor microenvironment of cervical cancer[J]. Mol Carcinog, 2019, 58(3): 388-397. doi: 10.1002/mc.22936
    [36]
    CHEN X J, DENG Y R, WANG Z C, et al. Hypoxia-induced ZEB1 promotes cervical cancer progression via CCL8-dependent tumour-associated macrophage recruitment[J]. Cell Death Dis, 2019, 10(7): 508. doi: 10.1038/s41419-019-1748-1
    [37]
    STRACHAN D C, RUFFELL B, OEI Y, et al. CSF1R inhibition delays cervical and mammary tumor growth in murine models by attenuating the turnover of tumor-associated macrophages and enhancing infiltration by CD8+ T cells[J]. Oncoimmunology, 2013, 2(12): e26968. doi: 10.4161/onci.26968
    [38]
    GUO F, FENG Y C, ZHAO G, et al. Tumor-associated CD163+ M2 macrophage infiltration is highly associated with PD-L1 expression in cervical cancer[J]. Cancer Manag Res, 2020, 12: 5831-5843. doi: 10.2147/CMAR.S257692
    [39]
    JANTOVÁS, PAULOVI? OVÁE, PAULOVI? OVÁL, et al. Immunobiological efficacy and immunotoxicity of novel synthetically prepared fluoroquinolone ethyl 6-fluoro-8-nitro-4-oxo-1, 4-dihydroquinoline-3-carboxylate[J]. Immunobiology, 2018, 223(1): 81-93. doi: 10.1016/j.imbio.2017.10.008
    [40]
    GIRAUDO E, INOUE M, HANAHAN D. An amino-bisphosphonate targets MMP-9-expressing macrophages and angiogenesis to impair cervical carcinogenesis[J]. J Clin Invest, 2004, 114(5): 623-633. doi: 10.1172/JCI200422087
  • Related Articles

    [1]YANG Qi, FAN Bo, LU Lu. Influence of thyroidectomy on related indicators in patients with thyroid cancer[J]. Journal of Clinical Medicine in Practice, 2020, 24(23): 30-32. DOI: 10.7619/jcmp.202023010
    [2]PENG Zhen, BAI Yuqiang. Effect of modified Sugiura procedure on portal hemodynamic indicators in patients with cirrhosis complicated with portal hypertension[J]. Journal of Clinical Medicine in Practice, 2020, 24(19): 100-102,106. DOI: 10.7619/jcmp.202019029
    [3]KANG Jianzhong. Effect of community seamless chain service management on blood pressure indicators and complications in middle-aged and elderly patients with chronic hypertension[J]. Journal of Clinical Medicine in Practice, 2018, (3): 134-136,140. DOI: 10.7619/jcmp.201803040
    [4]WANG Yun, LI Huili, ZHAO Yanmei, WANG Hao, LYU Guili, XIANG Zijun, XIAO Juan. Application of evidence-based nursing intervention in preventing postoperative complicated infection in patients with acute cholecystitis[J]. Journal of Clinical Medicine in Practice, 2018, (2): 68-71. DOI: 10.7619/jcmp.201802021
    [6]XUE Xiaoling, WAN Runqin. Effect of quality nursing intervention on gastrointestinal function and VAS score after laparoscopic cholecystectomy[J]. Journal of Clinical Medicine in Practice, 2017, (16): 65-68. DOI: 10.7619/jcmp.201716021
    [8]GUO Wei, ZHOU Yixiang. Study on the changes of serum and scurf oxidative stress indicators and hemorheology indicatorsof patients with psoriasis[J]. Journal of Clinical Medicine in Practice, 2017, (3): 112-114. DOI: 10.7619/jcmp.201703034
    [10]WANG Xiaoqing, QIN Jing, CHANG Yanhai, LI Weiwei, DUAN Dapeng, GUO Xiong. Changes of IL-1β and TNF-α in Kashin-Beck disease patients with total knee arthroplasty and its correlation with pain index[J]. Journal of Clinical Medicine in Practice, 2016, (7): 69-71. DOI: 10.7619/jcmp.201607020
  • Cited by

    Periodical cited type(27)

    1. 万小琴. 中西医结合护理在腹腔镜卵巢囊肿切除术患者中的应用效果. 现代诊断与治疗. 2024(10): 1575-1577 .
    2. 江虹. 卵巢囊肿手术病人正念水平及其影响因素分析. 全科护理. 2023(14): 1987-1989 .
    3. 王新梅. 需要层次护理联合纽曼护理对卵巢囊肿手术患者预后及自我护理能力的影响. 医学信息. 2023(23): 145-148 .
    4. 何园园. 围手术期综合护理在超声引导下介入治疗良性卵巢囊肿患者中的应用效果. 妇儿健康导刊. 2023(07): 140-142 .
    5. 张丽,刘文文,翟云帆. 基于同质医疗理念的创新型护理在卵巢囊肿手术患者中的应用. 河南医学高等专科学校学报. 2022(03): 324-327 .
    6. 许丹丹,张会聪,师沛沛. 快速康复理念对卵巢囊肿围手术期患者康复效果. 西藏医药. 2022(05): 103-104 .
    7. 魏巧玲,代启文,张鹤玲. 快速康复护理对腹腔镜卵巢囊肿剥除术患者术后康复及护理满意度的影响. 黑龙江中医药. 2021(03): 366-367 .
    8. 周晓丹. “生物-心理-社会”的整体化护理模式对卵巢囊肿患者术后生活幸福度的影响. 现代诊断与治疗. 2021(19): 3181-3182 .
    9. 曹青青,熊云珑,刘性英. 细节护理辅助弹性袜联合抗栓泵在妇科腹腔镜手术患者中的应用. 医疗装备. 2021(22): 150-152 .
    10. 李慧. 优质护理模式在腹腔镜下卵巢囊肿切除术后患者中的应用研究. 实用妇科内分泌电子杂志. 2021(04): 58-61 .
    11. 彭慧英. 腹腔镜卵巢囊肿剥除术与常规开腹手术治疗卵巢囊肿的应用效果评价. 中国医学创新. 2020(01): 52-55 .
    12. 范志君,彭幼清,彭军兰,王琎,蔡婧梅,王志华,王玉玲. 需要层次护理在卵巢囊肿患者术后的应用. 中国当代医药. 2020(08): 203-205 .
    13. 谢晓芳,龙微. 弹性袜联合抗栓泵在腹腔镜下卵巢囊肿剥除术患者中的应用. 医疗装备. 2020(09): 154-155 .
    14. 卢利玲,熊杜鹃,熊榕熔. 围术期护理干预对腹腔镜卵巢囊肿切除术患者术后康复及疼痛的影响. 基层医学论坛. 2020(15): 2150-2151 .
    15. 胡胜君,毛晓波. 妇科腹腔镜术后静脉自控镇痛效果的影响因素分析. 中国妇幼保健. 2020(11): 2004-2006 .
    16. 巩晓红. 循证护理模式对卵巢囊肿手术患者焦虑 抑郁情绪及术后康复效果的影响. 中国药物与临床. 2020(02): 307-308 .
    17. 尹长梅. 优质护理在腹腔镜下卵巢囊肿切除术后中效果观察及满意度影响评价. 智慧健康. 2020(21): 54-55 .
    18. 符云,陈欢,郝丽颖. 全程专业护理个案管理对卵巢囊肿患者康复和生活质量的影响. 当代护士(中旬刊). 2020(11): 61-64 .
    19. 朱奕融,方淑芬,高菊梅,余玉杰. 单孔腹腔镜与多孔腹腔镜卵巢囊肿剔除术临床疗效及术后卵巢储备功能的对比研究. 中国医学创新. 2020(35): 12-16 .
    20. 王喜珍,刘小丽. 围手术强化护理在腹腔镜下卵巢囊肿剥除术中的作用. 中外女性健康研究. 2019(02): 139-140 .
    21. 张雨. 目标策略的针对性护理干预对卵巢囊肿患者腹腔镜术后影响. 实用中西医结合临床. 2019(05): 174-175 .
    22. 章光娣. 全方位护理管理对腹腔镜卵巢囊肿剔除术患者术后康复的影响. 人人健康. 2019(18): 193 .
    23. 苏紫英,毛文成. 全程护理管理对腹腔镜卵巢囊肿剔除术患者术后康复的影响. 国外医学(医学地理分册). 2019(04): 461-462+465 .
    24. 邬晓娟. 快速康复护理对腹腔镜卵巢囊肿剥除术患者胃肠功能及生命质量的影响. 医疗装备. 2019(23): 162-163 .
    25. 金荣,祝兵,李婷婷. 中医护理干预对腹腔镜下卵巢囊肿切除术患者的护理效果分析. 医学食疗与健康. 2019(17): 160-161 .
    26. 姜依帆. 量化评估策略的护理干预在高龄卵巢囊肿患者手术室护理中的应用. 黑龙江医药科学. 2019(06): 149-150 .
    27. 黄晶,林也容,李娟. 经阴道与经腹行良性卵巢囊肿切除术的疗效比较. 临床医学工程. 2018(12): 1675-1676 .

    Other cited types(1)

Catalog

    Article views (517) PDF downloads (35) Cited by(28)

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return