HU Tingting, GUO Qiu, TANG Weiwei, YANG Huan, LIU Guijun. A Nomogram model establishment for noscomial infection in elderly patients with hypertension and diabetes mellitus[J]. Journal of Clinical Medicine in Practice, 2021, 25(5): 55-60. DOI: 10.7619/jcmp.20210055
Citation: HU Tingting, GUO Qiu, TANG Weiwei, YANG Huan, LIU Guijun. A Nomogram model establishment for noscomial infection in elderly patients with hypertension and diabetes mellitus[J]. Journal of Clinical Medicine in Practice, 2021, 25(5): 55-60. DOI: 10.7619/jcmp.20210055

A Nomogram model establishment for noscomial infection in elderly patients with hypertension and diabetes mellitus

More Information
  • Received Date: January 03, 2021
  • Available Online: March 22, 2021
  • Published Date: March 14, 2021
  •   Objective  To investigate the risk factors of hospital-associated infection (HAI) in elderly patients with hypertension and diabetes mellitus, and to establish a nomogram model for HAI.
      Methods  A retrospective study was performed to analyze the clinical data of 148 elderly patients with hypertension complicated with diabetes mellitus. The patients were divided into the HAI group and non-HAI group according to occurrence of HAI. Univariate analysis and multivariate Logistic regression analysis were used to screen out the independent risk factors of HAI occurrence. Then, each factor was scored by Nomogram method to construct the prediction model. Receiver operating characteristic (ROC) curve was drawn to assess the predictive value of the established Nomogram. Furthermore, the predictive ability of the Nomogram model was internally validated by calculating the C-index and the calibration plot was drawn.
      Results  The mean age of 148 patients was (64.21±12.84) years, and 32 patients (21.62%) developed HAI. Univariate analysis showed that the occurrence of HAI was correlated with age, smoking, disease duration of comorbidities, blood pressure and blood glucose control state, other underlying diseases, APAHEⅡ scores, consciousness state and albumin levels (P < 0.05). The multivariate Logistic regression analysis showed that disease duration of comorbidities ≥10 years (OR=3.589, 95%CI, 1.056~12.193, P=0.041), blood glucose control substandard (OR=4.538, 95%CI, 1.287~16.002, P=0.019), other underlaying diseases (OR=8.893, 95%CI, 2.624~30.132, P < 0.001), APACHEⅡ score ≥20 (OR=6.259, 95%CI, 1.934~20.256, P=0.002), consciousness disorder (OR=9.365, 95%CI, 2.744~34.477, P=0.001) were independent risk factors for HAI occurrence. Based on above risk factors in Nomogram model, statistical analysis showed that this model had a good discrimination, C-index value and the area under the ROC curve, indicating that the nomogram model had better predictive performance and differentiation.
      Conclusion  The disease duration of comorbidities ≥10 years, substandard blood glucose control, other underlying diseases, APACHEⅡscore ≥20, consciousness disorder are independent risk factors for HAI occurrence in in elderly patients with hypertension and diabetes mellitus. Nomogram model based on these risk factors has good predictive efficacy and important clinical value, and can provide reference for prevention and control of HAI.
  • [1]
    LLOPIS F, FERRÉC, GARCÍA-LAMBERECHTS E J, et al. Are short-stay units an appropriate resource for hospitalising elderly patients with infection[J]. Rev Calid Asist, 2016, 31(6): 322-328. doi: 10.1016/j.cali.2016.02.007
    [2]
    王力红, 赵霞, 郝晋, 等. 高龄老年患者医院感染特点[J]. 中国感染控制杂志, 2017, 16(1): 6-9. doi: 10.3969/j.issn.1671-9638.2017.01.002
    [3]
    LI X Y, QI X, YUAN G H, et al. Microbiological profile and clinical characteristics of diabetic foot infection in Northern China: a retrospective multicentre survey in the Beijing area[J]. J Med Microbiol, 2018, 67(2): 160-168. doi: 10.1099/jmm.0.000658
    [4]
    中华人民共和国卫生部. 医院感染诊断标准(试行)[J]. 中华医学杂志, 2001, 81(5): 314-320. doi: 10.3760/j:issn:0376-2491.2001.05.027
    [5]
    中国老年医学学会高血压分会, 国家老年疾病临床医学研究中心中国老年心血管病防治联盟. 中国老年高血压管理指南2019[J]. 中国心血管杂志, 2019, 24(1): 1-23. https://www.cnki.com.cn/Article/CJFDTOTAL-ZLQG201902001.htm
    [6]
    中华医学会糖尿病学分会. 中国2型糖尿病防治指南(2017年版)[J]. 中国实用内科杂志, 2018, 38(4): 292-344. https://www.cnki.com.cn/Article/CJFDTOTAL-SYNK201804009.htm
    [7]
    NATHAN D M, BUSE J B, DAVIDSON M B, et al. Management of hyperglycemia in type 2 diabetes: a consensus algorithm for the initiation and adjustment of therapy: a consensus statement from the American Diabetes Association and the European Association for the Study of Diabetes[J]. Diabetes Care, 2006, 29(8): 1963-1972. doi: 10.2337/dc06-9912
    [8]
    潘桂群, 章建龙, 龚少波, 等. 老年高血压合并糖尿病患者医院感染的临床特点及影响因素分析[J]. 中华医院感染学杂志, 2019, 29(7): 1035-1037, 1041. https://www.cnki.com.cn/Article/CJFDTOTAL-ZHYY201907019.htm
    [9]
    MA Y, AJNAKINA O, STEPTOE A, et al. Higher risk of dementia in English older individuals who are overweight or obese[J]. Int J Epidemiol, 2020, 49(4): 1353-1365. doi: 10.1093/ije/dyaa099
    [10]
    粟毅. RICU医院获得性鲍曼不动杆菌肺炎49例临床分析[J]. 重庆医科大学学报, 2009, 34(11): 1584-1587. https://www.cnki.com.cn/Article/CJFDTOTAL-ZQYK200911037.htm
    [11]
    刘海燕, 刘勃, 王捷, 等. 肾脏内科住院患者医院感染的危险因素分析[J]. 中华医院感染学杂志, 2017, 27(9): 1994-1996, 2004. https://www.cnki.com.cn/Article/CJFDTOTAL-ZHYY201709020.htm
    [12]
    吴晓霞, 左阿芳, 吴建义, 等. 老年糖尿病患者医院感染的临床特点及影响因素分析[J]. 中华医院感染学杂志, 2017, 27(22): 5122-5125. https://www.cnki.com.cn/Article/CJFDTOTAL-ZHYY201722023.htm
    [13]
    刘卫平, 海云婷, 郭天慧, 等. 老年患者医院感染现状调查及病原菌耐药分析[J]. 中华医院感染学杂志, 2018, 28(11): 1645-1649. https://www.cnki.com.cn/Article/CJFDTOTAL-ZHYY201811011.htm
    [14]
    SCHERBAUM M, KÖSTERS K, MÜRBETH R E, et al. Incidence, pathogens and resistance patterns of nosocomial infections at a rural hospital in Gabon[J]. BMC Infect Dis, 2014, 14: 124. doi: 10.1186/1471-2334-14-124
    [15]
    KIM K, LEE S H, LEE S W, et al. Current findings of kidney biopsy including nephropathy associated with hypertension and diabetes mellitus in Korea[J]. Korean J Intern Med, 2020, 35(5): 1173-1187. doi: 10.3904/kjim.2020.195
    [16]
    王雁, 阿迪力·阿不都热合曼, 王烁, 等. 精准血糖控制对脑卒中相关感染免疫功能的影响[J]. 中华急诊医学杂志, 2017, 26(4): 381-385. doi: 10.3760/cma.j.issn.1671-0282.2017.04.005
    [17]
    陈亮, 韩秀迪, 朱晓莉, 等. 社区获得性肺炎患者入院血糖水平与预后的相关性: 一项多中心、回顾性研究[J]. 解放军医学杂志, 2020, 45(1): 84-91. https://www.cnki.com.cn/Article/CJFDTOTAL-JFJY202001011.htm
    [18]
    肖素红. 重症监护病房医院感染与年龄和基础疾病关系的临床研究[J]. 中国煤炭工业医学杂志, 2013, 16(8): 1334-1335. https://www.cnki.com.cn/Article/CJFDTOTAL-ZMGY201308048.htm
    [19]
    Öncül O, Öksüz S, Acar A, et al. Nosocomial infection characteristics in a burn intensive care unit: analysis of an eleven-year active surveillance[J]. Burns, 2014, 40(5): 835-841. doi: 10.1016/j.burns.2013.11.003
    [20]
    张鹏, 李育平, 王晓东, 等. 结合炎症反应指数的Nomogram模型对aSAH患者预后预测的价值[J]. 临床神经外科杂志, 2020, 17(2): 216-220. https://www.cnki.com.cn/Article/CJFDTOTAL-LCSW202002022.htm
    [21]
    IASONOS A, SCHRAG D, RAJ G V, et al. How to build and interpret a nomogram for cancer prognosis[J]. J Clin Oncol, 2008, 26(8): 1364-1370. http://europepmc.org/abstract/MED/18323559
    [22]
    ZHANG P, LI Y, ZHANG J, et al. Risk factors analysis and a nomogram model establishment for late postoperative seizures in patients with meningioma[J]. J Clin Neurosci, 2020, 80: 310-317. http://www.sciencedirect.com/science/article/pii/S0967586820313138
    [23]
    刘峰, 朱妮, 邱琳, 等. ARIMA乘积季节模型在陕西省手足口病预测中的应用[J]. 中华流行病学杂志, 2016, 37(8): 1117-1120. http://qikan.cqvip.com/Qikan/Article/Detail?id=669725809
    [24]
    TANG J, YANG B, ADAMS M P, et al. Artificial neural network-based prediction of outcome in Parkinson's disease patients using DaTscan SPECT imaging features[J]. Mol Imaging Biol, 2019, 21(6): 1165-1173. doi: 10.1007/s11307-019-01334-5
    [25]
    WEI W, JIANG J, LIANG H, et al. Application of a combined model with Autoregressive Integrated Moving Average (ARIMA) and Generalized Regression Neural Network (GRNN) in forecasting hepatitis incidence in Heng County, China[J]. PLoS One, 2016, 11(6): eO156768.
  • Related Articles

    [1]MA Jiajia, LIU Xiaoxin, XUE Bei, FENG Jing, ZHANG Zhengmin, YAO Liping, JU Xinxing, LIU Tingting. Risk prediction model construction of postoperative pulmonary infection in lung cancer patients undergoing four-level thoracoscopic surgery based on machine learning algorithms[J]. Journal of Clinical Medicine in Practice, 2025, 29(6): 111-117. DOI: 10.7619/jcmp.20245679
    [2]DU Fengming, CAO Xiaohua, LIU Ruichen, HU Chaoyang, SUN Yan. Establishment of artificial neural network model based on mitochondria-associated genes in Crohn's disease[J]. Journal of Clinical Medicine in Practice, 2024, 28(23): 8-15. DOI: 10.7619/jcmp.20242822
    [3]DING Jiali, LIU Xiaoguang, SHI Tian, MA Qiang, QI Yajie, LI Yuping, YU Hailong, LU Guangyu. Construction of a risk prediction model for enteral nutrition feeding intolerance in patients with severe cerebral hemorrhage based on machine learning algorithms[J]. Journal of Clinical Medicine in Practice, 2024, 28(12): 1-6. DOI: 10.7619/jcmp.20240467
    [4]SHI Haomin, YAN Su, QIAO Mengmeng, YANG Huilian. Research on gastric cancer lymph node metastasis prediction model based on machine learning algorithms[J]. Journal of Clinical Medicine in Practice, 2024, 28(1): 41-47, 61. DOI: 10.7619/jcmp.20233076
    [5]ZHANG Jiangnan, LI Ronghua, ZHOU Hongmei, XU Minyi, CAI Liangyu. Establishment of a predictive model for the risk of deep vein thrombosis after orthopedic surgery in the lower extremities and its verification[J]. Journal of Clinical Medicine in Practice, 2023, 27(23): 73-78. DOI: 10.7619/jcmp.20231971
    [6]ZHAN Xianfa, YU Xiaoya, WANG Hongjun, XIONG Kunlin. Efficacy of three machine learning algorithms in evaluating stability of carotid plaque in patients with cerebral infarction[J]. Journal of Clinical Medicine in Practice, 2023, 27(22): 6-12. DOI: 10.7619/jcmp.20232657
    [7]WANG Yu, CHU Jiadong, SUN Na, HAN Qiang, SHEN Yueping, ZHOU Lei, ZHU Xinping, ZHANG Xiaobin, YANG Yong. Construction of a predictive model for auxiliary diagnosis of perinatal depression and screening of machine learning algorithm[J]. Journal of Clinical Medicine in Practice, 2023, 27(18): 93-99. DOI: 10.7619/jcmp.20232044
    [8]WANG Yiren, LIU Aiai, ZHAN Xiang, LUO Yan, ZHOU Ping. Screening of genetic markers for diagnosis of nasopharyngeal carcinoma based on machine learning algorithm[J]. Journal of Clinical Medicine in Practice, 2023, 27(7): 6-11. DOI: 10.7619/jcmp.20230091
    [9]WANG Xiaoli, QU Hang, CHENG Weiyan, ZHAO Yi, CAI Yujian, WANG Wei. Application value of X-ray radiomics in distinguishing benign and malignant breast lesions and the efficacy comparison of three predictive models[J]. Journal of Clinical Medicine in Practice, 2021, 25(8): 21-24. DOI: 10.7619/jcmp.20210555
    [10]Influence of electro acupuncture on learning and memory capability and hippocampal neuronal apoptosis in AD model SD rats[J]. Journal of Clinical Medicine in Practice, 2015, (1): 1-6. DOI: 10.7619/jcmp.201501001

Catalog

    Article views (401) PDF downloads (11) Cited by()

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return