DONG Hui, YU Hang, WANG Yongxiang. Research progress in role and mechanism of circular RNA in osteoporosis[J]. Journal of Clinical Medicine in Practice, 2021, 25(4): 111-115. DOI: 10.7619/jcmp.20210167
Citation: DONG Hui, YU Hang, WANG Yongxiang. Research progress in role and mechanism of circular RNA in osteoporosis[J]. Journal of Clinical Medicine in Practice, 2021, 25(4): 111-115. DOI: 10.7619/jcmp.20210167

Research progress in role and mechanism of circular RNA in osteoporosis

More Information
  • Received Date: January 09, 2021
  • Available Online: March 14, 2021
  • Published Date: February 27, 2021
  • With the aggravation of population aging, the prevalence of osteoporosis in the elderly is increasing year by year. Osteoporosis has become one of the most important public health problems in the world. In recent years, the clinical researches on osteoporosis mainly focus on osteoblasts and osteoclasts, but the mechanism is rarely studied. Circular RNA is a new stable non-coding RNA, which has been confirmed in lots of studies to play an important role in osteoporosis. In this paper, we searched the databases such as CNKI, Wanfang, PubMed and EMBASE with the key words of "osteoporosis" and "circular RNA", and summarized the research progress on role and mechanism of circular RNA on osteoporosis at home and abroad.
  • [1]
    COMPSTON J E, MCCLUNG M R, LESLIE W D. Osteoporosis[J]. Lancet, 2019, 393(10169): 364-376. doi: 10.1016/S0140-6736(18)32112-3
    [2]
    TANAKA S. RANKL-independent osteoclastogenesis: a long-standing controversy[J]. J Bone Miner Res, 2017, 32(3): 431-433. doi: 10.1002/jbmr.3092
    [3]
    HRDLICKOVA R, TOLOUE M, TIAN B. RNA-Seq methods for transcriptome analysis[J]. Wiley Interdiscip Rev RNA, 2017, 8(1): 10-10.
    [4]
    CHEN L L, YANG L. Regulation of circRNA biogenesis[J]. RNA Biol, 2015, 12(4): 381-388. doi: 10.1080/15476286.2015.1020271
    [5]
    JECK W R, SORRENTINO J A, WANG K, et al. Circular RNAs are abundant, conserved, and associated with ALU repeats[J]. RNA, 2013, 19(2): 141-157. doi: 10.1261/rna.035667.112
    [6]
    CHEN L L. The biogenesis and emerging roles of circular RNAs[J]. Nat Rev Mol Cell Biol, 2016, 17(4): 205-211. doi: 10.1038/nrm.2015.32
    [7]
    PATOP I L, WVST S, KADENER S. Past, present, and future of circRNAs[J]. Embo J, 2019, 38(16): e100836. http://www.ncbi.nlm.nih.gov/pubmed/31343080
    [8]
    WANG Y, MO Y, GONG Z, et al. Circular RNAs in human cancer[J]. Mol Cancer, 2017, 16(1): 25-25. doi: 10.1186/s12943-017-0598-7
    [9]
    KRISTENSEN L S, ANDERSEN M S, STAGSTED L V W, et al. The biogenesis, biology and characterization of circular RNAs[J]. Nat Rev Genet, 2019, 20(11): 675-691. doi: 10.1038/s41576-019-0158-7
    [10]
    QU S, YANG X, LI X, et al. Circular RNA: a new star of noncoding RNAs[J]. Cancer Lett, 2015, 365(2): 141-148. doi: 10.1016/j.canlet.2015.06.003
    [11]
    SUN Z, CHEN C, SU Y, et al. Regulatory mechanisms and clinical perspectives of circRNA in digestive system neoplasms[J]. J Cancer, 2019, 10(13): 2885-2891. doi: 10.7150/jca.31167
    [12]
    GUARNERIO J, BEZZI M, JEONG J C, et al. Oncogenic role of fusion-circRNAs derived from cancer-associated chromosomal translocations[J]. Cell, 2016, 165(2): 289-302. doi: 10.1016/j.cell.2016.03.020
    [13]
    LI J, YANG J, ZHOU P, et al. Circular RNAs in cancer: novel insights into origins, properties, functions and implications[J]. Am J Cancer Res, 2015, 5(2): 472-480. http://pubmedcentralcanada.ca/pmcc/articles/PMC4396047/?report=abstract
    [14]
    ZHAO K W, ZHAO Q, GUO Z D, et al. Hsa_Circ_0001275: a potential novel diagnostic biomarker for postmenopausal osteoporosis[J]. Cell Physiol Biochem, 2018, 46(6): 2508-2516. doi: 10.1159/000489657
    [15]
    HUANG Y, XIE J, LI E. Comprehensive circular RNA profiling reveals circ_0002060 as a potential diagnostic biomarkers for osteoporosis[J]. J Cell Biochem, 2019, 120(9): 15688-15694. doi: 10.1002/jcb.28838
    [16]
    HANSEN T B, JENSEN T I, CLAUSEN B H, et al. Natural RNA circles function as efficient microRNA sponges[J]. Nature, 2013, 495(7441): 384-388. doi: 10.1038/nature11993
    [17]
    KULCHESKI F R, CHRISTOFF A P, MARGIS R. Circular RNAs are miRNA sponges and can be used as a new class of biomarker[J]. J Biotechnol, 2016, 238: 42-51. doi: 10.1016/j.jbiotec.2016.09.011
    [18]
    PANDA A C. Circular RNAs act as miRNA sponges[J]. Adv Exp Med Biol, 2018, 1087: 67-79. http://www.ncbi.nlm.nih.gov/pubmed/30259358
    [19]
    HAN S, KUANG M, SUN C, et al. Circular RNA hsa_circ_0076690 acts as a prognostic biomarker in osteoporosis and regulates osteogenic differentiation of hBMSCs via sponging miR-152[J]. Aging (Albany N Y), 2020, 12(14): 15011-15020.
    [20]
    JI F, ZHU L, PAN J, et al. hsa_circ_0026827 promotes osteoblast differentiation of human dental pulp stem cells through the Beclin1 and RUNX1 signaling pathways by sponging miR-188-3p[J]. Front Cell Dev Biol, 2020, 8: 470. doi: 10.3389/fcell.2020.00470
    [21]
    ZHANG M, JIA L, ZHENG Y. circRNA expression profiles in human bone marrow stem cells undergoing osteoblast differentiation[J]. Stem Cell Rev Rep, 2019, 15(1): 126-138. doi: 10.1007/s12015-018-9841-x
    [22]
    ZHAO R, LI Y, LIN Z, et al. miR-199b-5p modulates BMSC osteogenesis via suppressing GSK-3β/β-catenin signaling pathway[J]. Biochem Biophys Res Commun, 2016, 477(4): 749-754. doi: 10.1016/j.bbrc.2016.06.130
    [23]
    LI X, ZHENG Y, ZHENG Y, et al. Circular RNA CDR1as regulates osteoblastic differentiation of periodontal ligament stem cells via the miR-7/GDF5/SMAD and p38 MAPK signaling pathway[J]. Stem Cell Res Ther, 2018, 9(1): 232. doi: 10.1186/s13287-018-0976-0
    [24]
    HUANG Y, XIAO D, HUANG S, et al. Circular RNA YAP1 attenuates osteoporosis through up-regulation of YAP1 and activation of Wnt/β-catenin pathway[J]. Biomed Pharmacother, 2020, 129: 110365. doi: 10.1016/j.biopha.2020.110365
    [25]
    LIN C, ZHONG W, YAN W, et al. Circ-SLC8A1 regulates osteoporosis through blocking the inhibitory effect of miR-516b-5p on AKAP2 expression[J]. J Gene Med, 2020, 22(11): e3263. doi: 10.1002/jgm.3263
    [26]
    WANG H, FENG C, JIN Y, et al. Identification and characterization of circular RNAs involved in mechanical force-induced periodontal ligament stem cells[J]. J Cell Physiol, 2019, 234(7): 10166-10177. doi: 10.1002/jcp.27686
    [27]
    WEN J, GUAN Z, YU B, et al. Circular RNA hsa_circ_0076906 competes with OGN for miR-1305 biding site to alleviate the progression of osteoporosis[J]. Int J Biochem Cell Biol, 2020, 122: 105719. doi: 10.1016/j.biocel.2020.105719
    [28]
    XU X Q, CHEN Y, TAN B Y, et al. Circular RNA circ_0011269 sponges miR-122 to regulate RUNX2 expression and promotes osteoporosis progression[J]. J Cell Biochem, 2020, 121(12): 4819-4826. doi: 10.1002/jcb.29709
    [29]
    YU L, LIU Y. circRNA_0016624 could sponge miR-98 to regulate BMP2 expression in postmenopausal osteoporosis[J]. Biochem Biophys Res Commun, 2019, 516(2): 546-550. doi: 10.1016/j.bbrc.2019.06.087
    [30]
    ZHANG L, TANG Y, ZHU X, et al. Overexpression of miR-335-5p promotes bone formation and regeneration in mice[J]. J Bone Miner Res, 2017, 32(12): 2466-2475. doi: 10.1002/jbmr.3230
    [31]
    ZHANG Y, XIONG Y, ZHOU J, et al. FoxO1 expression in osteoblasts modulates bone formation through resistance to oxidative stress in mice[J]. Biochem Biophys Res Commun, 2018, 503(3): 1401-1408. doi: 10.1016/j.bbrc.2018.07.055
    [32]
    赵可伟. 绝经后骨质疏松环状RNA表达谱研究及潜在分子标志物筛选[D]. 广州: 南方医科大学, 2017.
    [33]
    CHEN X, OUYANG Z, SHEN Y, et al. CircRNA_28313/miR-195a/CSF1 axis modulates osteoclast differentiation to affect OVX-induced bone absorption in mice[J]. RNA Biol, 2019, 16(9): 1249-1262. doi: 10.1080/15476286.2019.1624470
    [34]
    DOU C, CAO Z, YANG B, et al. Changing expression profiles of lncRNAs, mRNAs, circRNAs and miRNAs during osteoclastogenesis[J]. Sci Rep, 2016, 6: 21499. doi: 10.1038/srep21499
    [35]
    MIZOGUCHI F, MURAKAMI Y, SAITO T, et al. miR-31 controls osteoclast formation and bone resorption by targeting RhoA[J]. Arthritis Res Ther, 2013, 15(5): R102. doi: 10.1186/ar4282
    [36]
    LIU S, WANG C, BAI J, et al. Involvement of circRNA_0007059 in the regulation of postmenopausal osteoporosis by promoting the microRNA-378/BMP-2 axis[J]. Cell Biol Int, 2021, 45(2): 447-455. doi: 10.1002/cbin.11502
    [37]
    MIAO F, YIN B H, ZHANG X, et al. CircRNA_009934 induces osteoclast bone resorption via silencing miR-5107[J]. Eur Rev Med Pharmacol Sci, 2020, 24(14): 7580-7588. http://www.researchgate.net/publication/343427071_CircRNA_009934_induces_osteoclast_bone_resorption_via_silencing_miR-5107
    [38]
    LIN J B, MA S F, ZHU C, et al. Circular RNA atlas in osteoclast differentiation with and without alendronate treatment[J]. J Orthop Surg Res, 2020, 15(1): 240. doi: 10.1186/s13018-020-01722-6
    [39]
    XIANG S K, WU Y, SHI H, et al. Circular RNA hsa_circ_0001445 in plasma as a novel biomarker for osteoporosis in postmenopausal women[J]. Biomarkers Med, 2020, 14(16): 1599-1607. doi: 10.2217/bmm-2020-0447
    [40]
    CHEN X, WANG Z Q, DUAN N, et al. Osteoblast-osteoclast interactions[J]. Connect Tissue Res, 2018, 59(2): 99-107. doi: 10.1080/03008207.2017.1290085
    [41]
    HAN B, CHAO J, YAO H. Circular RNA and its mechanisms in disease: From the bench to the clinic[J]. Pharmacol Ther, 2018, 187: 31-44. doi: 10.1016/j.pharmthera.2018.01.010
    [42]
    HE T, LIU W, CAO L, et al. CircRNAs and LncRNAs in osteoporosis[J]. Differentiation, 2020, 116: 16-25. doi: 10.1016/j.diff.2020.10.002
  • Cited by

    Periodical cited type(3)

    1. 刘鑫,张亮,石鹏志,王平川,王俊武,张钰,胡满,赵文杰,王静成. 环状核糖核酸在骨质疏松症中的研究进展. 中国骨质疏松杂志. 2022(05): 749-754 .
    2. 邹细欢,周月月,刘星. 非编码RNA在氡致肺癌中的研究进展. 实用临床医药杂志. 2022(16): 140-143 . 本站查看
    3. 黄玮,王旭,沈志梅,崔飞. 基质细胞衍生因子-1在骨质疏松中的作用机制研究进展. 实用临床医药杂志. 2022(21): 144-148 . 本站查看

    Other cited types(2)

Catalog

    Article views (412) PDF downloads (39) Cited by(5)

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return