Citation: | DONG Hui, YU Hang, WANG Yongxiang. Research progress in role and mechanism of circular RNA in osteoporosis[J]. Journal of Clinical Medicine in Practice, 2021, 25(4): 111-115. DOI: 10.7619/jcmp.20210167 |
[1] |
COMPSTON J E, MCCLUNG M R, LESLIE W D. Osteoporosis[J]. Lancet, 2019, 393(10169): 364-376. doi: 10.1016/S0140-6736(18)32112-3
|
[2] |
TANAKA S. RANKL-independent osteoclastogenesis: a long-standing controversy[J]. J Bone Miner Res, 2017, 32(3): 431-433. doi: 10.1002/jbmr.3092
|
[3] |
HRDLICKOVA R, TOLOUE M, TIAN B. RNA-Seq methods for transcriptome analysis[J]. Wiley Interdiscip Rev RNA, 2017, 8(1): 10-10.
|
[4] |
CHEN L L, YANG L. Regulation of circRNA biogenesis[J]. RNA Biol, 2015, 12(4): 381-388. doi: 10.1080/15476286.2015.1020271
|
[5] |
JECK W R, SORRENTINO J A, WANG K, et al. Circular RNAs are abundant, conserved, and associated with ALU repeats[J]. RNA, 2013, 19(2): 141-157. doi: 10.1261/rna.035667.112
|
[6] |
CHEN L L. The biogenesis and emerging roles of circular RNAs[J]. Nat Rev Mol Cell Biol, 2016, 17(4): 205-211. doi: 10.1038/nrm.2015.32
|
[7] |
PATOP I L, WVST S, KADENER S. Past, present, and future of circRNAs[J]. Embo J, 2019, 38(16): e100836. http://www.ncbi.nlm.nih.gov/pubmed/31343080
|
[8] |
WANG Y, MO Y, GONG Z, et al. Circular RNAs in human cancer[J]. Mol Cancer, 2017, 16(1): 25-25. doi: 10.1186/s12943-017-0598-7
|
[9] |
KRISTENSEN L S, ANDERSEN M S, STAGSTED L V W, et al. The biogenesis, biology and characterization of circular RNAs[J]. Nat Rev Genet, 2019, 20(11): 675-691. doi: 10.1038/s41576-019-0158-7
|
[10] |
QU S, YANG X, LI X, et al. Circular RNA: a new star of noncoding RNAs[J]. Cancer Lett, 2015, 365(2): 141-148. doi: 10.1016/j.canlet.2015.06.003
|
[11] |
SUN Z, CHEN C, SU Y, et al. Regulatory mechanisms and clinical perspectives of circRNA in digestive system neoplasms[J]. J Cancer, 2019, 10(13): 2885-2891. doi: 10.7150/jca.31167
|
[12] |
GUARNERIO J, BEZZI M, JEONG J C, et al. Oncogenic role of fusion-circRNAs derived from cancer-associated chromosomal translocations[J]. Cell, 2016, 165(2): 289-302. doi: 10.1016/j.cell.2016.03.020
|
[13] |
LI J, YANG J, ZHOU P, et al. Circular RNAs in cancer: novel insights into origins, properties, functions and implications[J]. Am J Cancer Res, 2015, 5(2): 472-480. http://pubmedcentralcanada.ca/pmcc/articles/PMC4396047/?report=abstract
|
[14] |
ZHAO K W, ZHAO Q, GUO Z D, et al. Hsa_Circ_0001275: a potential novel diagnostic biomarker for postmenopausal osteoporosis[J]. Cell Physiol Biochem, 2018, 46(6): 2508-2516. doi: 10.1159/000489657
|
[15] |
HUANG Y, XIE J, LI E. Comprehensive circular RNA profiling reveals circ_0002060 as a potential diagnostic biomarkers for osteoporosis[J]. J Cell Biochem, 2019, 120(9): 15688-15694. doi: 10.1002/jcb.28838
|
[16] |
HANSEN T B, JENSEN T I, CLAUSEN B H, et al. Natural RNA circles function as efficient microRNA sponges[J]. Nature, 2013, 495(7441): 384-388. doi: 10.1038/nature11993
|
[17] |
KULCHESKI F R, CHRISTOFF A P, MARGIS R. Circular RNAs are miRNA sponges and can be used as a new class of biomarker[J]. J Biotechnol, 2016, 238: 42-51. doi: 10.1016/j.jbiotec.2016.09.011
|
[18] |
PANDA A C. Circular RNAs act as miRNA sponges[J]. Adv Exp Med Biol, 2018, 1087: 67-79. http://www.ncbi.nlm.nih.gov/pubmed/30259358
|
[19] |
HAN S, KUANG M, SUN C, et al. Circular RNA hsa_circ_0076690 acts as a prognostic biomarker in osteoporosis and regulates osteogenic differentiation of hBMSCs via sponging miR-152[J]. Aging (Albany N Y), 2020, 12(14): 15011-15020.
|
[20] |
JI F, ZHU L, PAN J, et al. hsa_circ_0026827 promotes osteoblast differentiation of human dental pulp stem cells through the Beclin1 and RUNX1 signaling pathways by sponging miR-188-3p[J]. Front Cell Dev Biol, 2020, 8: 470. doi: 10.3389/fcell.2020.00470
|
[21] |
ZHANG M, JIA L, ZHENG Y. circRNA expression profiles in human bone marrow stem cells undergoing osteoblast differentiation[J]. Stem Cell Rev Rep, 2019, 15(1): 126-138. doi: 10.1007/s12015-018-9841-x
|
[22] |
ZHAO R, LI Y, LIN Z, et al. miR-199b-5p modulates BMSC osteogenesis via suppressing GSK-3β/β-catenin signaling pathway[J]. Biochem Biophys Res Commun, 2016, 477(4): 749-754. doi: 10.1016/j.bbrc.2016.06.130
|
[23] |
LI X, ZHENG Y, ZHENG Y, et al. Circular RNA CDR1as regulates osteoblastic differentiation of periodontal ligament stem cells via the miR-7/GDF5/SMAD and p38 MAPK signaling pathway[J]. Stem Cell Res Ther, 2018, 9(1): 232. doi: 10.1186/s13287-018-0976-0
|
[24] |
HUANG Y, XIAO D, HUANG S, et al. Circular RNA YAP1 attenuates osteoporosis through up-regulation of YAP1 and activation of Wnt/β-catenin pathway[J]. Biomed Pharmacother, 2020, 129: 110365. doi: 10.1016/j.biopha.2020.110365
|
[25] |
LIN C, ZHONG W, YAN W, et al. Circ-SLC8A1 regulates osteoporosis through blocking the inhibitory effect of miR-516b-5p on AKAP2 expression[J]. J Gene Med, 2020, 22(11): e3263. doi: 10.1002/jgm.3263
|
[26] |
WANG H, FENG C, JIN Y, et al. Identification and characterization of circular RNAs involved in mechanical force-induced periodontal ligament stem cells[J]. J Cell Physiol, 2019, 234(7): 10166-10177. doi: 10.1002/jcp.27686
|
[27] |
WEN J, GUAN Z, YU B, et al. Circular RNA hsa_circ_0076906 competes with OGN for miR-1305 biding site to alleviate the progression of osteoporosis[J]. Int J Biochem Cell Biol, 2020, 122: 105719. doi: 10.1016/j.biocel.2020.105719
|
[28] |
XU X Q, CHEN Y, TAN B Y, et al. Circular RNA circ_0011269 sponges miR-122 to regulate RUNX2 expression and promotes osteoporosis progression[J]. J Cell Biochem, 2020, 121(12): 4819-4826. doi: 10.1002/jcb.29709
|
[29] |
YU L, LIU Y. circRNA_0016624 could sponge miR-98 to regulate BMP2 expression in postmenopausal osteoporosis[J]. Biochem Biophys Res Commun, 2019, 516(2): 546-550. doi: 10.1016/j.bbrc.2019.06.087
|
[30] |
ZHANG L, TANG Y, ZHU X, et al. Overexpression of miR-335-5p promotes bone formation and regeneration in mice[J]. J Bone Miner Res, 2017, 32(12): 2466-2475. doi: 10.1002/jbmr.3230
|
[31] |
ZHANG Y, XIONG Y, ZHOU J, et al. FoxO1 expression in osteoblasts modulates bone formation through resistance to oxidative stress in mice[J]. Biochem Biophys Res Commun, 2018, 503(3): 1401-1408. doi: 10.1016/j.bbrc.2018.07.055
|
[32] |
赵可伟. 绝经后骨质疏松环状RNA表达谱研究及潜在分子标志物筛选[D]. 广州: 南方医科大学, 2017.
|
[33] |
CHEN X, OUYANG Z, SHEN Y, et al. CircRNA_28313/miR-195a/CSF1 axis modulates osteoclast differentiation to affect OVX-induced bone absorption in mice[J]. RNA Biol, 2019, 16(9): 1249-1262. doi: 10.1080/15476286.2019.1624470
|
[34] |
DOU C, CAO Z, YANG B, et al. Changing expression profiles of lncRNAs, mRNAs, circRNAs and miRNAs during osteoclastogenesis[J]. Sci Rep, 2016, 6: 21499. doi: 10.1038/srep21499
|
[35] |
MIZOGUCHI F, MURAKAMI Y, SAITO T, et al. miR-31 controls osteoclast formation and bone resorption by targeting RhoA[J]. Arthritis Res Ther, 2013, 15(5): R102. doi: 10.1186/ar4282
|
[36] |
LIU S, WANG C, BAI J, et al. Involvement of circRNA_0007059 in the regulation of postmenopausal osteoporosis by promoting the microRNA-378/BMP-2 axis[J]. Cell Biol Int, 2021, 45(2): 447-455. doi: 10.1002/cbin.11502
|
[37] |
MIAO F, YIN B H, ZHANG X, et al. CircRNA_009934 induces osteoclast bone resorption via silencing miR-5107[J]. Eur Rev Med Pharmacol Sci, 2020, 24(14): 7580-7588. http://www.researchgate.net/publication/343427071_CircRNA_009934_induces_osteoclast_bone_resorption_via_silencing_miR-5107
|
[38] |
LIN J B, MA S F, ZHU C, et al. Circular RNA atlas in osteoclast differentiation with and without alendronate treatment[J]. J Orthop Surg Res, 2020, 15(1): 240. doi: 10.1186/s13018-020-01722-6
|
[39] |
XIANG S K, WU Y, SHI H, et al. Circular RNA hsa_circ_0001445 in plasma as a novel biomarker for osteoporosis in postmenopausal women[J]. Biomarkers Med, 2020, 14(16): 1599-1607. doi: 10.2217/bmm-2020-0447
|
[40] |
CHEN X, WANG Z Q, DUAN N, et al. Osteoblast-osteoclast interactions[J]. Connect Tissue Res, 2018, 59(2): 99-107. doi: 10.1080/03008207.2017.1290085
|
[41] |
HAN B, CHAO J, YAO H. Circular RNA and its mechanisms in disease: From the bench to the clinic[J]. Pharmacol Ther, 2018, 187: 31-44. doi: 10.1016/j.pharmthera.2018.01.010
|
[42] |
HE T, LIU W, CAO L, et al. CircRNAs and LncRNAs in osteoporosis[J]. Differentiation, 2020, 116: 16-25. doi: 10.1016/j.diff.2020.10.002
|
1. |
刘鑫,张亮,石鹏志,王平川,王俊武,张钰,胡满,赵文杰,王静成. 环状核糖核酸在骨质疏松症中的研究进展. 中国骨质疏松杂志. 2022(05): 749-754 .
![]() | |
2. |
邹细欢,周月月,刘星. 非编码RNA在氡致肺癌中的研究进展. 实用临床医药杂志. 2022(16): 140-143 .
![]() | |
3. |
黄玮,王旭,沈志梅,崔飞. 基质细胞衍生因子-1在骨质疏松中的作用机制研究进展. 实用临床医药杂志. 2022(21): 144-148 .
![]() |