Citation: | LI Na, ZHANG Runze, YAO Haiying. Research progress on treatment of myelodysplastic syndrome in the new drug era[J]. Journal of Clinical Medicine in Practice, 2021, 25(7): 128-132. DOI: 10.7619/jcmp.20210178 |
[1] |
NGOI N Y, CHOONG C, LEE J, et al. Targeting mitochondrial ap-optosis to overcome treatment resistance in cancer[J]. Cancers, 2020, 12(3): 574-583. doi: 10.3390/cancers12030574
|
[2] |
JILG S, REIDEL V, MÜLLER-THOMAS C, et al. Blockade of BCL-2 proteins efficiently induces apoptosis in progenitor cells of high-risk myelodysplastic syndromes patients[J]. Leukemia, 2016, 30(1): 112-123. doi: 10.1038/leu.2015.179
|
[3] |
REIDEL V, KAUSCHINGER J, HAUCH R T, et al. Selective inhibition of BCL-2 is a promising target in patients with high-risk myelodysplastic syndromes and adverse mutational profile[J]. Oncotarget, 2018, 9(25): 17270-17281. doi: 10.18632/oncotarget.24775
|
[4] |
LIN K H, WINTER P S, XIE A, et al. Targeting MCL-1/BCL-XL forestalls the acquisition of resistance to ABT-199 in acute myeloid leukemia[J]. Sci Rep, 2016, 6: 27696. doi: 10.1038/srep27696
|
[5] |
POLLYEA D A, STEVENS B M, JONES C L, et al. Venetoclax with azacitidine disrupts energy metabolism and targets leukemia stem cells in patients with acute myeloid leukemia[J]. Nat Med, 2018, 24(12): 1859-1866. doi: 10.1038/s41591-018-0233-1
|
[6] |
BOGENBERGER J M, KORNBLAU S M, PIERCEALL W E, et al. BCL-2 family proteins as 5-Azacytidine-sensitizing targets and determinants of response in myeloid malignancies[J]. Leukemia, 2014, 28(8): 1657-1665. doi: 10.1038/leu.2014.44
|
[7] |
ZEIDAN A M, POLLYEA D A, GARCIA J S, et al. A phase 1b study evaluating the safety and efficacy of venetoclax as monotherapy or in combination with azacitidine for the treatment of relapsed/refractory myelodysplastic syndrome[J]. Blood, 2019, 134(Supplement_1): 565-574. doi: 10.1182/blood-2019-124994
|
[8] |
WEI A H, GARCIA J S, BORATE U, et al. A phase 1b study evaluating the safety and efficacy of venetoclax in combination with azacitidine in treatment-naïve patients with higher-risk myelodysplastic syndrome[J]. Blood, 2019, 134(Supplement_1): 568-577. doi: 10.1182/blood-2019-124437
|
[9] |
BALL B J, FAMULARE C, STEIN E M, et al. Combined venetoclax and hypomethylating agent (HMA) therapy induces high response rates in patients with myelodysplastic syndrome including patients previously failing HMA[J]. Blood, 2019, 134(Supplement_1): 4241-4248. doi: 10.1182/blood-2019-125113
|
[10] |
JILG S, HAUCH R T, KAUSCHINGER J, et al. Venetoclax with azacitidine targets refractory MDS but spares healthy hematopoiesis at tailored dose[J]. Exp Hematol Oncol, 2019, 8: 9-21. doi: 10.1186/s40164-019-0133-1
|
[11] |
WEI A H, GARCIA J S, BORATE U, et al. A phase 1b study evaluating the safety and efficacy of venetoclax in combination with azacitidine in treatment-naïve patients with higher-risk myelodysplastic syndrome[J]. Blood, 2019, 134(Supplement_1): 568-575. doi: 10.1182/blood-2019-124437
|
[12] |
陈康, 孙步彤. 免疫检查点抑制剂不良反应的研究进展[J]. 中国实验诊断学, 2020, 24(8): 1388-1392. doi: 10.3969/j.issn.1007-4287.2020.08.051
|
[13] |
POSTOW M A, SIDLOW R, HELLMANN M D. Immune-related adverse events associated with immune checkpoint blockade[J]. N Engl J Med, 2018, 378(2): 158-168. doi: 10.1056/NEJMra1703481
|
[14] |
BARAIBAR I, MELERO I, PONZ-SARVISE M, et al. Safety and tolerability of immune checkpoint inhibitors (PD-1 and PD-L1) in cancer[J]. Drug Saf, 2019, 42(2): 281-294. doi: 10.1007/s40264-018-0774-8
|
[15] |
BODDU P, KANTARJIAN H, GARCIA-MANERO G, et al. The emerging role of immune checkpoint based approaches in AML and MDS[J]. Leuk Lymphoma, 2018, 59(4): 790-802. doi: 10.1080/10428194.2017.1344905
|
[16] |
YANG H, BUESO-RAMOS C, DINARDO C, et al. Expression of PD-L1, PD-L2, PD-1 and CTLA4 in myelodysplastic syndromes is enhanced by treatment with hypomethylating agents[J]. Leukemia, 2014, 28(6): 1280-1288. doi: 10.1038/leu.2013.355
|
[17] |
RSKOV A D, TREPPENDAHL M B, SKOVBO A, et al. Hypomethylation and up-regulation of PD-1 in T cells by azacytidine in MDS/AML patients: a rationale for combined targeting of PD-1 and DNA methylation[J]. Oncotarget, 2015, 6(11): 9612-9626. doi: 10.18632/oncotarget.3324
|
[18] |
GARCIA-MANERO G, SASAKI K, MONTALBAN-BRAVO G, et al. A phase Ⅱ study of nivolumab or ipilimumab with or without azacitidine for patients with myelodysplastic syndrome (MDS)[J]. Blood, 2018, 132(Supplement 1): 465. doi: 10.1182/blood-2018-99-119424
|
[19] |
MONLISH D A, BHATT S T, SCHUETTPELZ L G. The role of toll-like receptors in hematopoietic malignancies[J]. Front Immunol, 2016, 7: 390. http://www.ncbi.nlm.nih.gov/pmc/articles/PMC5039188/
|
[20] |
ZENG Q, SHU J, HU Q, et al. Apoptosis in human myelodysplastic syndrome CD34+ cells is modulated by the upregulation of TLRs and histone H4 acetylation via a β-arrestin 1 dependent mechanism[J]. Exp Cell Res, 2016, 340(1): 22-31. doi: 10.1016/j.yexcr.2015.12.008
|
[21] |
SALLMAN D A, TANAKA T N, LIST A, et al. SOHO state of the art update and next questions: biology and treatment of myelodysplastic syndromes[J]. Clin Lymphoma Myeloma Leuk, 2017, 17(10): 613-620. doi: 10.1016/j.clml.2017.09.018
|
[22] |
GAÑÁN-GÖMEZ I, WEI Y, STARCZYNOWSKI D T, et al. Deregulation of innate immune and inflammatory signaling in myelodysplastic syndromes[J]. Leukemia, 2015, 29(7): 1458-1469. doi: 10.1038/leu.2015.69
|
[23] |
GARCIA-MANERO G, MONTALBAN-BRAVO G, YANG H, et al. A clinical study of OPN-305, a toll-like receptor 2(TLR-2) antibody, in patients with lower risk myelodysplastic syndromes (MDS) that have received prior hypomethylating agent (HMA) therapy[J]. Blood, 2016, 128(22): 227-236. doi: 10.1182/blood.V128.22.227.227
|
[24] |
PARACATU L C, SCHUETTPELZ L G. Contribution of aberrant toll like receptor signaling to the pathogenesis of myelodysplastic syndromes[J]. Front Immunol, 2020, 11: 1236-1245. doi: 10.3389/fimmu.2020.01236
|
[25] |
赵相轩, 卢再鸣. 端粒酶活性抑制在癌症治疗中的作用研究进展[J]. 现代肿瘤医学, 2017, 25(19): 3178-3181. doi: 10.3969/j.issn.1672-4992.2017.19.039
|
[26] |
颜呈呈, 张悦. 端粒酶抑制剂伊美司他治疗骨髓增殖性肿瘤的研究进展与展望[J]. 国际输血及血液学杂志, 2017, 40(1): 41-45. doi: 10.3760/cma.j.issn.1673-419X.2017.01.08
|
[27] |
MAN R J, CHEN L W, ZHU H L. Telomerase inhibitors: a patent review (2010-2015)[J]. Expert Opin Ther Pat, 2016, 26(6): 679-688. doi: 10.1080/13543776.2016.1181172
|
[28] |
STEENSMA D P, PLATZBECKER U, VAN EYGEN K, et al. Imetelstat treatment leads to durable transfusion independence (TI) in RBC transfusion-dependent (TD), non-del(5q) lower risk MDS relapsed/refractory to erythropoiesis-stimulating agent (ESA) who are lenalidomide (LEN) and HMA naive[J]. Blood, 2018, 132(Supplement 1): 463-476. doi: 10.1182/blood-2018-99-114877
|
[29] |
Global Banking News. EHA reports promising treatment results with imetelstat in p-atients with lower risk myelodysplastic syndromes[EB/OL]. [2021-01-15]. http://www.m2.com/group/.
|
[30] |
BOCH T, LUFT T, METZGEROTH G, et al. Safety and efficacy of the CD95-ligand inhibitor asunercept in transfusion-dependent patients with low and intermediate risk MDS[J]. Leuk Res, 2018, 68: 62-69. doi: 10.1016/j.leukres.2018.03.007
|
[31] |
MALCOVATI L, KARIMI M, PAPAEMMANUIL E, et al. SF3B1 mutation identifies a distinct subset of myelodysplastic syndrome with ring sideroblasts[J]. Blood, 2015, 126(2): 233-241. doi: 10.1182/blood-2015-03-633537
|
[32] |
FENAUX P, KILADJIAN J J, PLATZBECKER U. Luspatercept for the treatment of Anemia in myelodysplastic syndromes and primary myelofibrosis[J]. Blood, 2019, 133(8): 790-794. doi: 10.1182/blood-2018-11-876888
|
[33] |
PLATZBECKER U, GERMING U, GÖTZE K S, et al. Luspatercept for the treatment of anaemia in patients with lower-risk myelodysplastic syndromes (PACE-MDS): a multicentre, open-label phase 2 dose-finding study with long-term extension study[J]. Lancet Oncol, 2017, 18(10): 1338-1347. doi: 10.1016/S1470-2045(17)30615-0
|
[34] |
JONATHAN C. Emerging Therapies for the Myelodysplastic Syndromes[J]. Clinical Hematology International, 2020, 2(1): 13-17. http://www.researchgate.net/publication/350131624_Emerging_Therapies_for_the_Myelodysplastic_Syndromes
|
[35] |
YE D, MA S, XIONG Y, et al. R-2-hydroxyglutarate as the key effector of 1DH mumtions promoting oncogenesis[J]. Cancer Cell, 2013, 23(3): 274-276. doi: 10.1016/j.ccr.2013.03.005
|
[36] |
HAFERLACH T, NAGATA Y, GROSSMANN V, et al. Landscape of genetic lesions in 944 patients with myelodysplastic syndromes[J]. Leukemia, 2014, 28(2): 241-247. doi: 10.1038/leu.2013.336
|
[37] |
RINALDI M, CAFFO M, MINUTOLI L, et al. ROS and brain gliomas: an overview of potential and innovative therapeutic strategies[J]. Int J Mol Sci, 2016, 17(6): E984-E993. doi: 10.3390/ijms17060984
|
[38] |
BODDU P, BORTHAKUR G. Therapeutic targeting of isocitrate dehydrogenase mutant AML[J]. Expert Opin Investig Drugs, 2017, 26(5): 525-530. doi: 10.1080/13543784.2017.1317745
|
[39] |
STEIN E M, DINARDO C D, POLLYEA D A, et al. Enasidenib in mutant IDH2 relapsed or refractory acute myeloid leukemia[J]. Blood, 2017, 130(6): 722-731. doi: 10.1182/blood-2017-04-779405
|
[40] |
DINARDO C D, STEIN E M, DE BOTTON S, et al. Durable remissions with ivosidenib in IDH1-mutated relapsed or refractory AML[J]. N Engl J Med, 2018, 378(25): 2386-2398. doi: 10.1056/NEJMoa1716984
|
[41] |
DINARDO C D, WATTS J M, STEIN E M, et al. Ivosidenib (AG-120) induced durable remissions and transfusion independence in patients with IDH1-mutant relapsed or refractory myelodysplastic syndrome: results from a phase 1 dose escalation and expansion study[J]. Blood, 2018, 132(Supplement 1): 1812-1819. doi: 10.1182/blood-2018-99-111264
|
[42] |
STEIN E M, FATHI A T, DINARDO C D, et al. Enasidenib (AG-221), a potent oral inhibitor of mutant isocitrate dehydrogenase 2(IDH2) enzyme, induces hematologic responses in patients with myelodysplastic syndromes (MDS)[J]. Blood, 2016, 128(22): 343-353. doi: 10.1182/blood.V128.22.343.343
|
[43] |
RICHARD-CARPENTIER G, DEZERN A E, TAKAHASHI K, et al. Preliminary results from the phase Ⅱ study of the IDH2-inhibitor enasidenib in patients with high-risk IDH2-mutated myelodysplastic syndromes (MDS)[J]. Blood, 2019, 134(Supplement_1): 678-684. doi: 10.1182/blood-2019-130501
|