LI Na, ZHANG Runze, YAO Haiying. Research progress on treatment of myelodysplastic syndrome in the new drug era[J]. Journal of Clinical Medicine in Practice, 2021, 25(7): 128-132. DOI: 10.7619/jcmp.20210178
Citation: LI Na, ZHANG Runze, YAO Haiying. Research progress on treatment of myelodysplastic syndrome in the new drug era[J]. Journal of Clinical Medicine in Practice, 2021, 25(7): 128-132. DOI: 10.7619/jcmp.20210178

Research progress on treatment of myelodysplastic syndrome in the new drug era

More Information
  • Received Date: January 08, 2021
  • Available Online: April 20, 2021
  • Published Date: April 14, 2021
  • Myelodysplastic syndrome (MDS) is a clonal hematopoietic stem cell disease, which has a high risk of transforming into acute myeloid leukemia. In the past, MDS was mainly treated with demethylation drugs and hematopoietic stem cell transplantation. In recent years, with the development of gene sequencing, some targeted drugs for gene mutation have good prospects in the treatment of MDS. The marketing of venetoclax knew as Bcl-2 inhibitor, immune checkpoint blocker, tomaralimab knew as Toll like receptor antibody, imetelstat knew as telomerase inhibitor, and luspatercept and galunisertib knew as transforming growth factor-β inhibitors make a breakthrough in the treatment of MDS. The ivosidenib (AG-120) and enasidenib (AG-221) knew as inhibitors of isocitrate dehydrogenase are also effective. This study reviewed the individualized treatment of MDS patients.
  • [1]
    NGOI N Y, CHOONG C, LEE J, et al. Targeting mitochondrial ap-optosis to overcome treatment resistance in cancer[J]. Cancers, 2020, 12(3): 574-583. doi: 10.3390/cancers12030574
    [2]
    JILG S, REIDEL V, MÜLLER-THOMAS C, et al. Blockade of BCL-2 proteins efficiently induces apoptosis in progenitor cells of high-risk myelodysplastic syndromes patients[J]. Leukemia, 2016, 30(1): 112-123. doi: 10.1038/leu.2015.179
    [3]
    REIDEL V, KAUSCHINGER J, HAUCH R T, et al. Selective inhibition of BCL-2 is a promising target in patients with high-risk myelodysplastic syndromes and adverse mutational profile[J]. Oncotarget, 2018, 9(25): 17270-17281. doi: 10.18632/oncotarget.24775
    [4]
    LIN K H, WINTER P S, XIE A, et al. Targeting MCL-1/BCL-XL forestalls the acquisition of resistance to ABT-199 in acute myeloid leukemia[J]. Sci Rep, 2016, 6: 27696. doi: 10.1038/srep27696
    [5]
    POLLYEA D A, STEVENS B M, JONES C L, et al. Venetoclax with azacitidine disrupts energy metabolism and targets leukemia stem cells in patients with acute myeloid leukemia[J]. Nat Med, 2018, 24(12): 1859-1866. doi: 10.1038/s41591-018-0233-1
    [6]
    BOGENBERGER J M, KORNBLAU S M, PIERCEALL W E, et al. BCL-2 family proteins as 5-Azacytidine-sensitizing targets and determinants of response in myeloid malignancies[J]. Leukemia, 2014, 28(8): 1657-1665. doi: 10.1038/leu.2014.44
    [7]
    ZEIDAN A M, POLLYEA D A, GARCIA J S, et al. A phase 1b study evaluating the safety and efficacy of venetoclax as monotherapy or in combination with azacitidine for the treatment of relapsed/refractory myelodysplastic syndrome[J]. Blood, 2019, 134(Supplement_1): 565-574. doi: 10.1182/blood-2019-124994
    [8]
    WEI A H, GARCIA J S, BORATE U, et al. A phase 1b study evaluating the safety and efficacy of venetoclax in combination with azacitidine in treatment-naïve patients with higher-risk myelodysplastic syndrome[J]. Blood, 2019, 134(Supplement_1): 568-577. doi: 10.1182/blood-2019-124437
    [9]
    BALL B J, FAMULARE C, STEIN E M, et al. Combined venetoclax and hypomethylating agent (HMA) therapy induces high response rates in patients with myelodysplastic syndrome including patients previously failing HMA[J]. Blood, 2019, 134(Supplement_1): 4241-4248. doi: 10.1182/blood-2019-125113
    [10]
    JILG S, HAUCH R T, KAUSCHINGER J, et al. Venetoclax with azacitidine targets refractory MDS but spares healthy hematopoiesis at tailored dose[J]. Exp Hematol Oncol, 2019, 8: 9-21. doi: 10.1186/s40164-019-0133-1
    [11]
    WEI A H, GARCIA J S, BORATE U, et al. A phase 1b study evaluating the safety and efficacy of venetoclax in combination with azacitidine in treatment-naïve patients with higher-risk myelodysplastic syndrome[J]. Blood, 2019, 134(Supplement_1): 568-575. doi: 10.1182/blood-2019-124437
    [12]
    陈康, 孙步彤. 免疫检查点抑制剂不良反应的研究进展[J]. 中国实验诊断学, 2020, 24(8): 1388-1392. doi: 10.3969/j.issn.1007-4287.2020.08.051
    [13]
    POSTOW M A, SIDLOW R, HELLMANN M D. Immune-related adverse events associated with immune checkpoint blockade[J]. N Engl J Med, 2018, 378(2): 158-168. doi: 10.1056/NEJMra1703481
    [14]
    BARAIBAR I, MELERO I, PONZ-SARVISE M, et al. Safety and tolerability of immune checkpoint inhibitors (PD-1 and PD-L1) in cancer[J]. Drug Saf, 2019, 42(2): 281-294. doi: 10.1007/s40264-018-0774-8
    [15]
    BODDU P, KANTARJIAN H, GARCIA-MANERO G, et al. The emerging role of immune checkpoint based approaches in AML and MDS[J]. Leuk Lymphoma, 2018, 59(4): 790-802. doi: 10.1080/10428194.2017.1344905
    [16]
    YANG H, BUESO-RAMOS C, DINARDO C, et al. Expression of PD-L1, PD-L2, PD-1 and CTLA4 in myelodysplastic syndromes is enhanced by treatment with hypomethylating agents[J]. Leukemia, 2014, 28(6): 1280-1288. doi: 10.1038/leu.2013.355
    [17]
    RSKOV A D, TREPPENDAHL M B, SKOVBO A, et al. Hypomethylation and up-regulation of PD-1 in T cells by azacytidine in MDS/AML patients: a rationale for combined targeting of PD-1 and DNA methylation[J]. Oncotarget, 2015, 6(11): 9612-9626. doi: 10.18632/oncotarget.3324
    [18]
    GARCIA-MANERO G, SASAKI K, MONTALBAN-BRAVO G, et al. A phase Ⅱ study of nivolumab or ipilimumab with or without azacitidine for patients with myelodysplastic syndrome (MDS)[J]. Blood, 2018, 132(Supplement 1): 465. doi: 10.1182/blood-2018-99-119424
    [19]
    MONLISH D A, BHATT S T, SCHUETTPELZ L G. The role of toll-like receptors in hematopoietic malignancies[J]. Front Immunol, 2016, 7: 390. http://www.ncbi.nlm.nih.gov/pmc/articles/PMC5039188/
    [20]
    ZENG Q, SHU J, HU Q, et al. Apoptosis in human myelodysplastic syndrome CD34+ cells is modulated by the upregulation of TLRs and histone H4 acetylation via a β-arrestin 1 dependent mechanism[J]. Exp Cell Res, 2016, 340(1): 22-31. doi: 10.1016/j.yexcr.2015.12.008
    [21]
    SALLMAN D A, TANAKA T N, LIST A, et al. SOHO state of the art update and next questions: biology and treatment of myelodysplastic syndromes[J]. Clin Lymphoma Myeloma Leuk, 2017, 17(10): 613-620. doi: 10.1016/j.clml.2017.09.018
    [22]
    GAÑÁN-GÖMEZ I, WEI Y, STARCZYNOWSKI D T, et al. Deregulation of innate immune and inflammatory signaling in myelodysplastic syndromes[J]. Leukemia, 2015, 29(7): 1458-1469. doi: 10.1038/leu.2015.69
    [23]
    GARCIA-MANERO G, MONTALBAN-BRAVO G, YANG H, et al. A clinical study of OPN-305, a toll-like receptor 2(TLR-2) antibody, in patients with lower risk myelodysplastic syndromes (MDS) that have received prior hypomethylating agent (HMA) therapy[J]. Blood, 2016, 128(22): 227-236. doi: 10.1182/blood.V128.22.227.227
    [24]
    PARACATU L C, SCHUETTPELZ L G. Contribution of aberrant toll like receptor signaling to the pathogenesis of myelodysplastic syndromes[J]. Front Immunol, 2020, 11: 1236-1245. doi: 10.3389/fimmu.2020.01236
    [25]
    赵相轩, 卢再鸣. 端粒酶活性抑制在癌症治疗中的作用研究进展[J]. 现代肿瘤医学, 2017, 25(19): 3178-3181. doi: 10.3969/j.issn.1672-4992.2017.19.039
    [26]
    颜呈呈, 张悦. 端粒酶抑制剂伊美司他治疗骨髓增殖性肿瘤的研究进展与展望[J]. 国际输血及血液学杂志, 2017, 40(1): 41-45. doi: 10.3760/cma.j.issn.1673-419X.2017.01.08
    [27]
    MAN R J, CHEN L W, ZHU H L. Telomerase inhibitors: a patent review (2010-2015)[J]. Expert Opin Ther Pat, 2016, 26(6): 679-688. doi: 10.1080/13543776.2016.1181172
    [28]
    STEENSMA D P, PLATZBECKER U, VAN EYGEN K, et al. Imetelstat treatment leads to durable transfusion independence (TI) in RBC transfusion-dependent (TD), non-del(5q) lower risk MDS relapsed/refractory to erythropoiesis-stimulating agent (ESA) who are lenalidomide (LEN) and HMA naive[J]. Blood, 2018, 132(Supplement 1): 463-476. doi: 10.1182/blood-2018-99-114877
    [29]
    Global Banking News. EHA reports promising treatment results with imetelstat in p-atients with lower risk myelodysplastic syndromes[EB/OL]. [2021-01-15]. http://www.m2.com/group/.
    [30]
    BOCH T, LUFT T, METZGEROTH G, et al. Safety and efficacy of the CD95-ligand inhibitor asunercept in transfusion-dependent patients with low and intermediate risk MDS[J]. Leuk Res, 2018, 68: 62-69. doi: 10.1016/j.leukres.2018.03.007
    [31]
    MALCOVATI L, KARIMI M, PAPAEMMANUIL E, et al. SF3B1 mutation identifies a distinct subset of myelodysplastic syndrome with ring sideroblasts[J]. Blood, 2015, 126(2): 233-241. doi: 10.1182/blood-2015-03-633537
    [32]
    FENAUX P, KILADJIAN J J, PLATZBECKER U. Luspatercept for the treatment of Anemia in myelodysplastic syndromes and primary myelofibrosis[J]. Blood, 2019, 133(8): 790-794. doi: 10.1182/blood-2018-11-876888
    [33]
    PLATZBECKER U, GERMING U, GÖTZE K S, et al. Luspatercept for the treatment of anaemia in patients with lower-risk myelodysplastic syndromes (PACE-MDS): a multicentre, open-label phase 2 dose-finding study with long-term extension study[J]. Lancet Oncol, 2017, 18(10): 1338-1347. doi: 10.1016/S1470-2045(17)30615-0
    [34]
    JONATHAN C. Emerging Therapies for the Myelodysplastic Syndromes[J]. Clinical Hematology International, 2020, 2(1): 13-17. http://www.researchgate.net/publication/350131624_Emerging_Therapies_for_the_Myelodysplastic_Syndromes
    [35]
    YE D, MA S, XIONG Y, et al. R-2-hydroxyglutarate as the key effector of 1DH mumtions promoting oncogenesis[J]. Cancer Cell, 2013, 23(3): 274-276. doi: 10.1016/j.ccr.2013.03.005
    [36]
    HAFERLACH T, NAGATA Y, GROSSMANN V, et al. Landscape of genetic lesions in 944 patients with myelodysplastic syndromes[J]. Leukemia, 2014, 28(2): 241-247. doi: 10.1038/leu.2013.336
    [37]
    RINALDI M, CAFFO M, MINUTOLI L, et al. ROS and brain gliomas: an overview of potential and innovative therapeutic strategies[J]. Int J Mol Sci, 2016, 17(6): E984-E993. doi: 10.3390/ijms17060984
    [38]
    BODDU P, BORTHAKUR G. Therapeutic targeting of isocitrate dehydrogenase mutant AML[J]. Expert Opin Investig Drugs, 2017, 26(5): 525-530. doi: 10.1080/13543784.2017.1317745
    [39]
    STEIN E M, DINARDO C D, POLLYEA D A, et al. Enasidenib in mutant IDH2 relapsed or refractory acute myeloid leukemia[J]. Blood, 2017, 130(6): 722-731. doi: 10.1182/blood-2017-04-779405
    [40]
    DINARDO C D, STEIN E M, DE BOTTON S, et al. Durable remissions with ivosidenib in IDH1-mutated relapsed or refractory AML[J]. N Engl J Med, 2018, 378(25): 2386-2398. doi: 10.1056/NEJMoa1716984
    [41]
    DINARDO C D, WATTS J M, STEIN E M, et al. Ivosidenib (AG-120) induced durable remissions and transfusion independence in patients with IDH1-mutant relapsed or refractory myelodysplastic syndrome: results from a phase 1 dose escalation and expansion study[J]. Blood, 2018, 132(Supplement 1): 1812-1819. doi: 10.1182/blood-2018-99-111264
    [42]
    STEIN E M, FATHI A T, DINARDO C D, et al. Enasidenib (AG-221), a potent oral inhibitor of mutant isocitrate dehydrogenase 2(IDH2) enzyme, induces hematologic responses in patients with myelodysplastic syndromes (MDS)[J]. Blood, 2016, 128(22): 343-353. doi: 10.1182/blood.V128.22.343.343
    [43]
    RICHARD-CARPENTIER G, DEZERN A E, TAKAHASHI K, et al. Preliminary results from the phase Ⅱ study of the IDH2-inhibitor enasidenib in patients with high-risk IDH2-mutated myelodysplastic syndromes (MDS)[J]. Blood, 2019, 134(Supplement_1): 678-684. doi: 10.1182/blood-2019-130501

Catalog

    Article views (513) PDF downloads (42) Cited by()

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return