Citation: | HUANG Qian, LI Xueliang. Research progress of gastric intestinal metaplasia[J]. Journal of Clinical Medicine in Practice, 2021, 25(9): 107-112. DOI: 10.7619/jcmp.20210403 |
[1] |
SHAO L, LI P, YE J, et al. Risk of gastric cancer among patients with gastric intestinal Metaplasia[J]. Int J Cancer, 2018, 143(7): 1671-1677. doi: 10.1002/ijc.31571
|
[2] |
LI D, BAUTISTA M C, JIANG S F, et al. Risks and predictors of gastric adenocarcinoma in patients with gastric intestinal Metaplasia and dysplasia: a population-based study[J]. Am J Gastroenterol, 2016, 111(8): 1104-1113. doi: 10.1038/ajg.2016.188
|
[3] |
KINOSHITA H, HAYAKAWA Y, KOIKE K. Metaplasia in the stomach-precursor of gastric cancer?[J]. Int J Mol Sci, 2017, 18(10): E2063. doi: 10.3390/ijms18102063
|
[4] |
HEILMANN K L, HÖPKER W W. Loss of differentiation in intestinal Metaplasia in cancerous stomachs. A comparative morphologic study[J]. Pathol Res Pract, 1979, 164(3): 249-258. doi: 10.1016/S0344-0338(79)80047-3
|
[5] |
FILIPE M I, MUÑOZ N, MATKO I, et al. Intestinal Metaplasia types and the risk of gastric cancer: a cohort study in Slovenia[J]. Int J Cancer, 1994, 57(3): 324-329. doi: 10.1002/ijc.2910570306
|
[6] |
SHIOTANI A, IISHI H, ISHIGURO S, et al. Epithelial cell turnover in relation to ongoing damage of the gastric mucosa in patients with early gastric cancer: increase of cell proliferation in paramalignant lesions[J]. J Gastroenterol, 2005, 40(4): 337-344. doi: 10.1007/s00535-004-1549-9
|
[7] |
GONZÁLEZ C A, Sanz-Anquela J M, Companioni O, et al. Incomplete type of intestinal Metaplasia has the highest risk to progress to gastric cancer: results of the Spanish follow-up multicenter study[J]. J Gastroenterol Hepatol, 2016, 31(5): 953-958. doi: 10.1111/jgh.13249
|
[8] |
BLANKFIELD R P. Helicobacter pylori infection and the development of gastric cancer[J]. N Engl J Med, 2002, 346(1): 65-67. doi: 10.1056/NEJM200201033460115
|
[9] |
CORREA P, SHIAO Y H. Phenotypic and genotypic events in gastric carcinogenesis[J]. Cancer Res, 1994, 54(7 Suppl): 1941s-1943s. http://carcin.oxfordjournals.org/lookup/ijlink?linkType=ABST&journalCode=canres&resid=54/7_Supplement/1941s
|
[10] |
CORREA P. Human gastric carcinogenesis: a multistep and multifactorial process: First American Cancer Society Award Lecture on Cancer Epidemiology and Prevention[J]. Cancer Res, 1992, 52(24): 6735-6740. http://jac.oxfordjournals.org/cgi/ijlink?linkType=ABST&journalCode=canres&resid=52/24/6735
|
[11] |
SHAH S C, GAWRON A J, MUSTAFA R A, et al. Histologic subtyping of gastric intestinal metaplasia: overview and considerations for clinical practice[J]. Gastroenterology, 2020, 158(3): 745-750. doi: 10.1053/j.gastro.2019.12.004
|
[12] |
HÖCKER M, HOHENBERGER P. Helicobacter pylori virulence factors: one part of a big picture[J]. Lancet, 2003, 362(9391): 1231-1233. doi: 10.1016/S0140-6736(03)14547-3
|
[13] |
PALFRAMAN S L, KWOK T, GABRIEL K. Vacuolating cytotoxin A (VacA), a key toxin for Helicobacter pylori pathogenesis[J]. Front Cell Infect Microbiol, 2012, 2: 92. http://www.ncbi.nlm.nih.gov/pubmed/22919683
|
[14] |
WANG J, XU L J, SHI R H, et al. Gastric atrophy and intestinal Metaplasia before and after Helicobacter pylori eradication: a meta-analysis[J]. Digestion, 2011, 83(4): 253-260. doi: 10.1159/000280318
|
[15] |
KODAMA M, MURAKAMI K, OKIMOTO T, et al. Ten-year prospective follow-up of histological changes at five points on the gastric mucosa as recommended by the updated Sydney system after Helicobacter pylori eradication[J]. J Gastroenterol, 2012, 47(4): 394-403. doi: 10.1007/s00535-011-0504-9
|
[16] |
ZULLO A, RINALDI V, HASSAN C, et al. Ascorbic acid and intestinal Metaplasia in the stomach: a prospective, randomized study[J]. Aliment Pharmacol Ther, 2000, 14(10): 1303-1309. doi: 10.1046/j.1365-2036.2000.00841.x
|
[17] |
KONG Y J, YI H G, DAI J C, et al. Histological changes of gastric mucosa after Helicobacter pylori eradication: a systematic review and meta-analysis[J]. World J Gastroenterol, 2014, 20(19): 5903-5911. doi: 10.3748/wjg.v20.i19.5903
|
[18] |
IARC Working Group on the Evaluation of Carcinogenic Risks to Humans. Tobacco smoke and involuntary smoking[J]. IARC Monogr Eval Carcinog Risks Humans, 2004, 83: 1-1438. http://onlinelibrary.wiley.com/resolve/reference/PMED?id=15285078
|
[19] |
KIM K, CHANG Y, AHN J, et al. Smoking and urinary cotinine levels are predictors of increased risk for gastric intestinal Metaplasia[J]. Cancer Res, 2019, 79(3): 676-684. doi: 10.1158/0008-5472.CAN-18-2268
|
[20] |
SNIR Y, VILKIN A, GINGOLD-BELFER R, et al. Sa1240 proton pump inhibitors use, HELICOBACTER pylori infection, anti parietal cell antibodies and smoking are associated with diagnosis of gastric intestinal METAPLASIA[J]. Gastrointest Endosc, 2018, 87(6): AB178. http://www.sciencedirect.com/science/article/pii/S0016510718305534
|
[21] |
LEE S A, KANG D, SHIM K N, et al. Effect of diet and Helicobacter pylori infection to the risk of early gastric cancer[J]. J Epidemiol, 2003, 13(3): 162-168. doi: 10.2188/jea.13.162
|
[22] |
SONG J H, KIM Y S, HEO N J, et al. High salt intake is associated with atrophic gastritis with intestinal Metaplasia[J]. Cancer Epidemiol Biomarkers Prev, 2017, 26(7): 1133-1138. doi: 10.1158/1055-9965.EPI-16-1024
|
[23] |
SINGH K, GANDHI S, BATOOL R. A case-control study of the association between vitamin D levels and gastric incomplete intestinal Metaplasia[J]. Nutrients, 2018, 10(5): E629. doi: 10.3390/nu10050629
|
[24] |
TAKAHASHI M, NISHIKAWA A, FURUKAWA F, et al. Dose-dependent promoting effects of sodium chloride (NaCI) on rat glandular stomach carcinogenesis initiated with Nmethyl-N'-nitro-N-nitrosoguanidine[J]. Carcinogenesis, 1994, 15(7): 1429-1432. doi: 10.1093/carcin/15.7.1429
|
[25] |
CROSS A J, POLLOCK J R, BINGHAM S A. Haem, not protein or inorganic iron, is responsible for endogenous intestinal N-nitrosation arising from red meat[J]. Cancer Res, 2003, 63(10): 2358-2360. http://europepmc.org/abstract/MED/12750250
|
[26] |
TATSUGAMI M, ITO M, TANAKA S, et al. Bile acid promotes intestinal Metaplasia and gastric carcinogenesis[J]. Cancer Epidemiol Biomarkers Prev, 2012, 21(11): 2101-2107. doi: 10.1158/1055-9965.EPI-12-0730
|
[27] |
MINALYAN A, BENHAMMOU J N, ARTASHESYAN A, et al. Autoimmune atrophic gastritis: current perspectives[J]. Clin Exp Gastroenterol, 2017, 10: 19-27. doi: 10.2147/CEG.S109123
|
[28] |
NIKOU G C, ANGELOPOULOS T P. Current concepts on gastric carcinoid tumors[J]. Gastroenterol Res Pract, 2012, 2012: 287825. http://europepmc.org/articles/pmc3534241/
|
[29] |
KIM K, CHANG Y, AHN J, et al. Body mass index and risk of intestinal metaplasia: a cohort study[J]. Cancer Epidemiol Biomarkers Prev, 2019, 28(4): 789-797. doi: 10.1158/1055-9965.EPI-18-0733
|
[30] |
CHOI S I, YOON C, PARK M R, et al. CDX1 expression induced by CagA-expressing Helicobacter pylori promotes gastric tumorigenesis[J]. Mol Cancer Res, 2019, 17(11): 2169-2183. doi: 10.1158/1541-7786.MCR-19-0181
|
[31] |
ASANO N, IMATANI A, WATANABE T, et al. Cdx2 expression and intestinal Metaplasia induced by H. pylori infection of gastric cells is regulated by NOD1-mediated innate immune responses[J]. Cancer Res, 2016, 76(5): 1135-1145. doi: 10.1158/0008-5472.CAN-15-2272
|
[32] |
YU J H, ZHENG J B, QI J, et al. Bile acids promote gastric intestinal Metaplasia by upregulating CDX2 and MUC2 expression via the FXR/NF-κB signalling pathway[J]. Int J Oncol, 2019, 54(3): 879-892. http://www.researchgate.net/publication/330551295_Bile_acids_promote_gastric_intestinal_metaplasia_by_upregulating_CDX2_and_MUC2_expression_via_the_FXRNF-kB_signalling_pathway
|
[33] |
LI T, GUO H Q, LI H, et al. MicroRNA-92a-1-5p increases CDX2 by targeting FOXD1 in bile acids-induced gastric intestinal Metaplasia[J]. Gut, 2019, 68(10): 1751-1763. doi: 10.1136/gutjnl-2017-315318
|
[34] |
CAMILO V, GARRIDO M, VALENTE P, et al. Differentiation reprogramming in gastric intestinal Metaplasia and dysplasia: role of SOX2 and CDX2[J]. Histopathology, 2015, 66(3): 343-350. doi: 10.1111/his.12544
|
[35] |
TSUKAMOTO T, INADA K, TANAKA H, et al. Down-regulation of a gastric transcription factor, Sox2, and ectopic expression of intestinal homeobox genes, Cdx1 and Cdx2: inverse correlation during progression from gastric/intestinal-mixed to complete intestinal Metaplasia[J]. J Cancer Res Clin Oncol, 2004, 130(3): 135-145. doi: 10.1007/s00432-003-0519-6
|
[36] |
NIU H J, JIA Y C, LI T, et al. SOX2 inhibition promotes promoter demethylation of CDX2 to facilitate gastric intestinal Metaplasia[J]. Dig Dis Sci, 2017, 62(1): 124-132. doi: 10.1007/s10620-016-4361-5
|
[37] |
YUAN T, NI Z, HAN C, et al. SOX2 interferes with the function of CDX2 in bile acid-induced gastric intestinal Metaplasia[J]. Cancer Cell Int, 2019, 19: 24. doi: 10.1186/s12935-019-0739-8
|
[38] |
LU W Q, NI Z, TONG M F, et al. DKK1 is epigenetically downregulated by promoter methylation and inhibits bile acid-induced gastric intestinal Metaplasia[J]. Biochem Biophys Res Commun, 2020, 523(3): 780-786. doi: 10.1016/j.bbrc.2019.12.109
|
[39] |
HAMEDI ASL D, NASERPOUR FARIVAR T, RAHMANI B, et al. The role of transferrin receptor in the Helicobacter pylori pathogenesis; L-ferritin as a novel marker for intestinal Metaplasia[J]. Microb Pathog, 2019, 126: 157-164. doi: 10.1016/j.micpath.2018.10.039
|
[40] |
DUAN X J, LIAN H W, LI J, et al. Expression of GCRG213p, LINE-1 endonuclease variant, significantly different in gastric complete and incomplete intestinal Metaplasia[J]. Diagn Pathol, 2019, 14(1): 61. doi: 10.1186/s13000-019-0838-9
|
[41] |
FUKUDA H, MIURA Y, OSAWA, et al. Linked color imaging can enhance recognition of early gastric cancer by high color contrast to surrounding gastric intestinal Metaplasia[J]. J Gastroenterol, 2019, 54(5): 396-406. doi: 10.1007/s00535-018-1515-6
|
[42] |
CHEN H L, WANG H S, WU X B, et al. Predictability of gastric intestinal Metaplasia by patchy lavender color seen on linked color imaging endoscopy[J]. Lasers Med Sci, 2019, 34(9): 1791-1797. doi: 10.1007/s10103-019-02775-8
|
[43] |
ONO S, KATO M, TSUDA M, et al. Lavender color in linked color imaging enables noninvasive detection of gastric intestinal Metaplasia[J]. Digestion, 2018, 98(4): 222-230. doi: 10.1159/000489454
|
[44] |
CHEN H L, LIU Y N, LU Y, et al. Ability of blue laser imaging with magnifying endoscopy for the diagnosis of gastric intestinal Metaplasia[J]. Lasers Med Sci, 2018, 33(8): 1757-1762. doi: 10.1007/s10103-018-2536-3
|
[45] |
CHEN H L, WU X B, LIU Y N, et al. Blue laser imaging with acetic acid enhancement improved the detection rate of gastric intestinal Metaplasia[J]. Lasers Med Sci, 2019, 34(3): 555-559. doi: 10.1007/s10103-018-2629-z
|
[46] |
SONG K H, HWANG J A, KIM S M, et al. Acetic acid chromoendoscopy for determining the extent of gastric intestinal Metaplasia[J]. Gastrointest Endosc, 2017, 85(2): 349-356. doi: 10.1016/j.gie.2016.07.064
|
[47] |
LI L H, KANG D Y, TU H H, et al. Nonlinear optical microscopy for label-freely detecting gastric intestinal Metaplasia[J]. Laser Phys Lett, 2019, 16(1): 015602. doi: 10.1088/1612-202X/aaea72
|
[48] |
CASTRO R, ESPOSITO G, LIBÂNIO D, et al. A single vial is enough in the absence of endoscopic suspected intestinal Metaplasia-less is more![J]. Scand J Gastroenterol, 2019, 54(5): 673-677. doi: 10.1080/00365521.2019.1613443
|
[49] |
KUTLUANA U, KILCILER A G, MIZRAK S, et al. Can neopterin be a useful immune biomarker for differentiating gastric intestinal Metaplasia and gastric atrophy from non-atrophic non-metaplastic chronic gastritis?[J]. Gastroenterol Hepatol, 2019, 42(5): 289-295. doi: 10.1016/j.gastrohep.2019.01.005
|
[50] |
PLUMMER M, FRANCESCHI S, VIGNAT J, et al. Global burden of gastric cancer attributable to Helicobacter pylori[J]. Int J Cancer, 2015, 136(2): 487-490. doi: 10.1002/ijc.28999
|
[51] |
GUPTA S, LI D, EL SERAG H B, et al. AGA clinical practice guidelines on management of gastric intestinal Metaplasia[J]. Gastroenterology, 2020, 158(3): 693-702. doi: 10.1053/j.gastro.2019.12.003
|
[52] |
DINIS-RIBEIRO M, KUIPERS E J. How to manage a patient with gastric intestinal metaplasia: an international perspective[J]. Gastroenterology, 2020, 158(6): 1534-1537. doi: 10.1053/j.gastro.2020.01.008
|
[53] |
PIMENTEL-NUNES P, LIBÂNIO D, MARCOS-PINTO R, et al. Management of epithelial precancerous conditions and lesions in the stomach (maps ii): European society of gastrointestinal endoscopy (esge), European Helicobacter and microbiota study group (ehmsg), European society of pathology (esp), and sociedade portuguesa de endoscopia digestiva (sped) guideline update 2019[J]. Endoscopy, 2019, 51(4): 365-388. doi: 10.1055/a-0859-1883
|
[54] |
BANKS M, GRAHAM D, JANSEN M, et al. British Society of Gastroenterology guidelines on the diagnosis and management of patients at risk of gastric adenocarcinoma[J]. Gut, 2019, 68(9): 1545-1575. doi: 10.1136/gutjnl-2018-318126
|
[55] |
PIMENTA-MELO A R, MONTEIRO-SOARES M, LIBÂNIO D, et al. Missing rate for gastric cancer during upper gastrointestinal endoscopy[J]. Eur J Gastroenterol Hepatol, 2016, 28(9): 1041-1049. doi: 10.1097/MEG.0000000000000657
|
[56] |
KANTSEVOY S V, ADLER D G, CONWAY J D, et al. Endoscopic mucosal resection and endoscopic submucosal dissection[J]. Gastrointest Endosc, 2008, 68(1): 11-18. doi: 10.1016/j.gie.2008.01.037
|
[57] |
ONO H, YAO K S, FUJISHIRO M, et al. Guidelines for endoscopic submucosal dissection and endoscopic mucosal resection for early gastric cancer[J]. Dig Endosc, 2016, 28(1): 3-15. doi: 10.1111/den.12518
|
[58] |
BRAY F, FERLAY J, SOERJOMATARAM I, et al. Global cancer statistics 2018: GLOBOCAN estimates of incidence and mortality worldwide for 36 cancers in 185 countries[J]. CA Cancer J Clin, 2018, 68(6): 394-424. doi: 10.3322/caac.21492
|