XU Hui, SHEN Caiyi, QIN Zijian, GAO Yingning, WANG Min. Research progress of mannose's clinical application[J]. Journal of Clinical Medicine in Practice, 2021, 25(14): 103-107. DOI: 10.7619/jcmp.20210814
Citation: XU Hui, SHEN Caiyi, QIN Zijian, GAO Yingning, WANG Min. Research progress of mannose's clinical application[J]. Journal of Clinical Medicine in Practice, 2021, 25(14): 103-107. DOI: 10.7619/jcmp.20210814

Research progress of mannose's clinical application

More Information
  • Received Date: February 25, 2021
  • Available Online: July 25, 2021
  • Published Date: July 27, 2021
  • Mannose is a protein glycosylated monosaccharide with molecular formula C6H12O6, and it can interfere with glucose metabolism, inhibit fat deposition, regulate intestinal flora and participate in immune regulation. Comprehensive understanding of the mechanism of mannose in the treatment of related diseases is the key to expand its clinical application. In this study, we reviewed the research progress of mannose in anti-tumor, urinary tract infection, obesity, diabetes and other aspects in recent years, explored its mechanism and application prospect, hoping to provide theoretical supports for expanding the clinical application of mannose.
  • [1]
    THORENS B, MUECKLER M. Glucose transporters in the 21st Century[J]. Am J Physiol Endocrinol Metab, 2010, 298(2): E141-E145. doi: 10.1152/ajpendo.00712.2009
    [2]
    ENGERING A J, CELLA M, FLUITSMA D M, et al. Mannose receptor mediated antigen uptake and presentation in human dendritic cells[J]. Adv Exp Med Biol, 1997, 417: 183-187. http://intimm.oxfordjournals.org/external-ref?access_num=10.1007/978-1-4757-9966-8_31&link_type=DOI
    [3]
    KOPPENOL W H, BOUNDS P L, DANG C V. Otto Warburg's contributions to current concepts of cancer metabolism[J]. Nat Rev Cancer, 2011, 11(5): 325-337. doi: 10.1038/nrc3038
    [4]
    LIANG J, CAO R X, ZHANG Y J, et al. PKM2 dephosphorylation by Cdc25A promotes the Warburg effect and tumorigenesis[J]. Nat Commun, 2016, 7: 12431. doi: 10.1038/ncomms12431
    [5]
    刘戈, 宋关斌. 肿瘤细胞的糖代谢调控与肿瘤治疗[J]. 生物医学工程学杂志, 2019, 36(4): 691-695. https://www.cnki.com.cn/Article/CJFDTOTAL-SWGC201904023.htm
    [6]
    王洪善, 张晓娟, 李恒, 等. 甘露寡糖对高脂饮食小鼠的益生作用[J]. 食品与发酵工业, 2018, 44(11): 63-68. https://www.cnki.com.cn/Article/CJFDTOTAL-SPFX201811010.htm
    [7]
    GAO P, SHEN S, LI X D, et al. Dihydroartemisinin inhibits the proliferation of leukemia cells K562 by suppressing PKM2 and GLUT1 mediated aerobic glycolysis[J]. Drug Des Devel Ther, 2020, 14: 2091-2100. doi: 10.2147/DDDT.S248872
    [8]
    才秋敏. 葡萄糖转运蛋白1与肿瘤形成[J]. 中国基层医药, 2008, 15(3): 517-518. doi: 10.3760/cma.j.issn.1008-6706.2008.03.122
    [9]
    GONZALEZ P S, O'PREY J, CARDACI S, et al. Mannose impairs tumour growth and enhances chemotherapy[J]. Nature, 2018, 563(7733): 719-723. doi: 10.1038/s41586-018-0729-3
    [10]
    宋蒙蒙, 陈哲文, 李晔, 等. 甘露糖抗肿瘤作用的研究进展[J]. 肿瘤代谢与营养电子杂志, 2019, 6(3): 283-286. https://www.cnki.com.cn/Article/CJFDTOTAL-ZLDX201903003.htm
    [11]
    DALLE VEDOVE E, COSTABILE G, MERKEL O M. Mannose and mannose-6-phosphate receptor-targeted drug delivery systems and their application in cancer therapy[J]. Adv Healthc Mater, 2018, 7(14): e1701398. doi: 10.1002/adhm.201701398
    [12]
    WOJTKOWIAK J W, VERDUZCO D, SCHRAMM K J, et al. Drug resistance and cellular adaptation to tumor acidic pH microenvironment[J]. Mol Pharm, 2011, 8(6): 2032-2038. doi: 10.1021/mp200292c
    [13]
    FISCHER U, JÄNICKE R U, SCHULZE-OSTHOFF K. Many cuts to ruin: a comprehensive update of caspase substrates[J]. Cell Death Differ, 2003, 10(1): 76-100. http://thorax.bmj.com/external-ref?access_num=10.1038/sj.cdd.4401160&link_type=DOI
    [14]
    FAN Z X, WANG Y Q, XIANG S J, et al. Dual-self-recognizing, stimulus-responsive and carrier-free methotrexate-mannose conjugate nanoparticles with highly synergistic chemotherapeutic effects[J]. J Mater Chem B, 2020, 8(9): 1922-1934. doi: 10.1039/D0TB00049C
    [15]
    LIU D R, GUAN Q L, GAO M T, et al. Mannose receptor as a potential biomarker for gastric cancer: a pilot study[J]. Int J Biol Markers, 2017, 32(3): e278-e283. doi: 10.5301/jbm.5000244
    [16]
    STRASS BURGER D, STERGIOU N, URSCHBACH M, et al. Mannose-decorated multicomponent supramolecular polymers trigger effective uptake into antigen-presenting cells[J]. ChemBioChem, 2018, 19(9): 912-916. doi: 10.1002/cbic.201800114
    [17]
    MOVAHEDI K, SCHOONOOGHE S, LAOUI D, et al. Nanobody-based targeting of the macrophage mannose receptor for effective in vivo imaging of tumor-associated macrophages[J]. Cancer Res, 2012, 72(16): 4165-4177. doi: 10.1158/0008-5472.CAN-11-2994
    [18]
    DALLE VEDOVE E, COSTABILE G, MERKEL O M. Mannose and mannose-6-phosphate receptor-targeted drug delivery systems and their application in cancer therapy[J]. Adv Healthc Mater, 2018, 7(14): e1701398. doi: 10.1002/adhm.201701398
    [19]
    陈哲文, 石汉平, 缪明永, 等. 低糖与甘露糖协同抑制胰腺肿瘤生长[J]. 肿瘤防治研究, 2020, 47(5): 319-323. doi: 10.3971/j.issn.1000-8578.2020.19.1550
    [20]
    李武超, 张平, 王元, 等. D-甘露糖修饰黄芩苷阳离子脂质体的制备及其对肺癌A549细胞增殖的抑制作用[J]. 现代生物医学进展, 2021, 21(4): 625-628, 658. https://d.wanfangdata.com.cn/periodical/swcx202104005
    [21]
    王浩, 李海涛. 甘露糖通过下调GLUT1抑制结直肠癌发生及增殖[J]. 食品与发酵工业, 2020, 46(10): 53-59. https://www.cnki.com.cn/Article/CJFDTOTAL-SPFX202010008.htm
    [22]
    ZHAO F, YANG H X, BI D Z, et al. A systematic review and meta-analysis of antibiotic resistance patterns, and the correlation between biofilm formation with virulence factors in uropathogenic E. coli isolated from urinary tract infections[J]. Microb Pathog, 2020, 144: 104196. doi: 10.1016/j.micpath.2020.104196
    [23]
    SPAULDING C N, KLEIN R D, RUER S, et al. Selective depletion of uropathogenic E. coli from the gut by a FimH antagonist[J]. Nature, 2017, 546(7659): 528-532. doi: 10.1038/nature22972
    [24]
    RUSSO E, MONTT GUEVARA M, GIANNINI A, et al. Cranberry, D-mannose and anti-inflammatory agents prevent lower urinary tract symptoms in women undergoing prolapse surgery[J]. Climacteric, 2020, 23(2): 201-205. doi: 10.1080/13697137.2019.1679110
    [25]
    MILANDRI R, MALTAGLIATI M, BOCCHIALINI T, et al. Effectiveness of D-mannose, Hibiscus sabdariffa and Lactobacillus plantarum therapy in prevention of infectious events following urodynamic study[J]. Urologia, 2019, 86(3): 122-125. doi: 10.1177/0391560318798291
    [26]
    GENOVESE C, DAVINELLI S, MANGANO K, et al. Effects of a new combination of plant extracts plus d-mannose for the management of uncomplicated recurrent urinary tract infections[J]. J Chemother, 2018, 30(2): 107-114. doi: 10.1080/1120009X.2017.1393587
    [27]
    冯峰. 针对UPEC-FimH抗尿路感染的抗生素研究[D]. 兰州: 兰州大学, 2020.
    [28]
    SHARMA V, SMOLIN J, NAYAK J, et al. Mannose alters gut microbiome, prevents diet-induced obesity, and improves host metabolism[J]. Cell Rep, 2018, 24(12): 3087-3098. doi: 10.1016/j.celrep.2018.08.064
    [29]
    ZHAO L, ZHANG Q, MA W N, et al. A combination of quercetin and resveratrol reduces obesity in high-fat diet-fed rats by modulation of gut microbiota[J]. Food Funct, 2017, 8(12): 4644-4656. doi: 10.1039/C7FO01383C
    [30]
    HOU Y P, HE Q Q, OUYANG H M, et al. Human gut microbiota associated with obesity in Chinese children and adolescents[J]. Biomed Res Int, 2017, 2017: 7585989. http://europepmc.org/abstract/MED/29214176
    [31]
    LEY R E, TURNBAUGH P J, KLEIN S, et al. Microbial ecology: human gut microbes associated with obesity[J]. Nature, 2006, 444(7122): 1022-1023. doi: 10.1038/4441022a
    [32]
    YAN S K, SHI R J, LI L, et al. Mannan oligosaccharide suppresses lipid accumulation and appetite in western-diet-induced obese mice via reshaping gut microbiome and enhancing short-chain fatty acids production[J]. Mol Nutr Food Res, 2019, 63(23): e1900521. doi: 10.1002/mnfr.201900521
    [33]
    WANG H S, ZHANG X J, WANG S S, et al. Mannan-oligosaccharide modulates the obesity and gut microbiota in high-fat diet-fed mice[J]. Food Funct, 2018, 9(7): 3916-3929. doi: 10.1039/C8FO00209F
    [34]
    张梦军, 韩清娟, 陈晓玲, 等. NOD小鼠人源化后CD4+ Tregs和CD8+ Tregs频率和功能变化及意义[J]. 免疫学杂志, 2018, 34(1): 19-26. https://www.cnki.com.cn/Article/CJFDTOTAL-MYXZ201801004.htm
    [35]
    ZHANG D F, CHIA C, JIAO X, et al. D-mannose induces regulatory T cells and suppresses immunopathology[J]. Nat Med, 2017, 23(9): 1036-1045. doi: 10.1038/nm.4375
    [36]
    CHEN W, JIN W, HARDEGEN N, et al. Conversion of peripheral CD4+CD25-naive T cells to CD4+CD25+regulatory T cells by TGF-beta induction of transcription factor Foxp3[J]. J Exp Med, 2003, 198(12): 1875-1886. doi: 10.1084/jem.20030152
    [37]
    陈海红. 葡甘聚糖的抗糖尿病作用及其潜在机制探究[D]. 南昌: 南昌大学, 2020.
    [38]
    马姝月. 甘露糖调节内质网应激减轻Ⅰ型糖尿病早期胰岛炎症研究[D]. 重庆: 中国人民解放军陆军军医大学, 2019.
    [39]
    史湘铃, 夏惠, 许登峰, 等. 枸杞多糖主要组分甘露糖及其潜在靶标代谢物肌醇对小鼠胰岛β-TC6细胞的影响[J]. 卫生研究, 2020, 49(3): 458-462. https://www.cnki.com.cn/Article/CJFDTOTAL-WSYJ202003022.htm
    [40]
    ZHENG J L, LI H, ZHANG X J, et al. Prebiotic mannan-oligosaccharides augment the hypoglycemic effects of metformin in correlation with modulating gut microbiota[J]. J Agric Food Chem, 2018, 66(23): 5821-5831. doi: 10.1021/acs.jafc.8b00829
  • Cited by

    Periodical cited type(9)

    1. 颅内支架价值评估专家共识. 中国医疗设备. 2024(08): 1-10 .
    2. 高永开,杜伟. 支架辅助弹簧圈栓塞术治疗急性期颅内破裂宽颈动脉瘤的临床安全性及有效性. 临床医学研究与实践. 2022(26): 66-69 .
    3. 罗妙泉,王以舟,陈连辉. LVIS密网支架辅助弹簧圈栓塞治疗颅内宽颈小动脉瘤的临床研究. 海南医学. 2021(05): 610-613 .
    4. 陈洋,李琳坤. 双LVIS支架辅助弹簧圈栓塞治疗颅内宽颈动脉瘤的安全性和有效性. 临床医学研究与实践. 2021(10): 56-58 .
    5. 张子君. LVIS支架辅助弹簧圈栓塞在颅内宽颈动脉瘤中的临床应用效果. 医学理论与实践. 2021(09): 1514-1515 .
    6. 易田康,王政,伍业,伍博. 双微导管技术及LVIS支架辅助栓塞术治疗急性期颅内宽颈动脉瘤的疗效及对患者血清SICAM-1水平与神经功能的影响. 海南医学. 2021(09): 1106-1109 .
    7. 陈步翰,唐永生,何博源. 单纯弹簧圈栓塞与LVIS支架辅助弹簧圈栓塞治疗颅内破裂宽颈动脉瘤的疗效比较. 现代实用医学. 2021(04): 549-551 .
    8. 田志华,李敏,黄可丰,段海锋,张浩,茹小红. Solitaire支架与LVIS/LVISjr支架置入辅助弹簧圈栓塞治疗颅内动脉瘤的临床效果比较. 中国临床实用医学. 2021(02): 6-9 .
    9. 王永祥,杨成宝,陈春光. 颅内未破裂动脉瘤介入治疗效果及术后发生微小脑梗死的影响因素. 宁夏医科大学学报. 2021(12): 1247-1251 .

    Other cited types(0)

Catalog

    Article views PDF downloads Cited by(9)

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return