Citation: | ZHANG Jiale, LIANG Yuan, WANG Jingcheng. Research progress on tendon adhesion[J]. Journal of Clinical Medicine in Practice, 2021, 25(12): 119-123. DOI: 10.7619/jcmp.20210839 |
[1] |
LOIACONO C, PALERMI S, MASSA B, et al. Tendinopathy: pathophysiology, therapeutic options, and role of nutraceutics. A narrative literature review[J]. Medicina (Kaunas), 2019, 55(8): E447. doi: 10.3390/medicina55080447
|
[2] |
NICHOLS A E C, BEST K T, LOISELLE A E. The cellular basis of fibrotic tendon healing: challenges and opportunities[J]. Transl Res, 2019, 209: 156-168. doi: 10.1016/j.trsl.2019.02.002
|
[3] |
LEGRAND A, KAUFMAN Y, LONG C, et al. Molecular biology of flexor tendon healing in relation to reduction of tendon adhesions[J]. J Hand Surg Am, 2017, 42(9): 722-726. doi: 10.1016/j.jhsa.2017.06.013
|
[4] |
胡兴峰, 李青松, 季亮, 等. Ⅰ型胶原蛋白生物膜在损伤肌腱内源性愈合过程中的作用[J]. 局解手术学杂志, 2021, 30(2): 103-107.
|
[5] |
王继宏, 温树正, 蔺晓慧, 等. 组织工程肌腱缝合材料及生物力学研究: 最优选择[J]. 中国组织工程研究, 2015, 19(12): 1948-1952. https://www.cnki.com.cn/Article/CJFDTOTAL-XDKF201512029.htm
|
[6] |
ARUNG W, MEURISSE M, DETRY O. Pathophysiology and prevention of postoperative peritoneal adhesions[J]. World J Gastroenterol, 2011, 17(41): 4545-4553. doi: 10.3748/wjg.v17.i41.4545
|
[7] |
MENG J, YU P, TONG J, et al. Hydrogen treatment reduces tendon adhesion and inflammatory response[J]. J Cell Biochem, 2019: 120. http://www.ncbi.nlm.nih.gov/pubmed/30367509
|
[8] |
MORITA W, SNELLING S J, DAKIN S G, et al. Profibrotic mediators in tendon disease: a systematic review[J]. Arthritis Res Ther, 2016, 18(1): 269. doi: 10.1186/s13075-016-1165-0
|
[9] |
CHEN S, JIANG S C, ZHENG W, et al. RelA/p65 inhibition prevents tendon adhesion by modulating inflammation, cell proliferation, and apoptosis[J]. Cell Death Dis, 2017, 8(3): e2710. doi: 10.1038/cddis.2017.135
|
[10] |
TANG X M, DAI J, SUN H L. Thermal pretreatment promotes the protective effect of HSP70 against tendon adhesion in tendon healing by increasing HSP70 expression[J]. Mol Med Rep, 2019, 20(1): 205-215. http://www.ingentaconnect.com/content/sp/mmr/2019/00000020/00000001/art00024
|
[11] |
CUI H M, HE Y, CHEN S, et al. Macrophage-derived miRNA-containing exosomes induce peritendinous fibrosis after tendon injury through the miR-21-5p/Smad7 pathway[J]. Mol Ther Nucleic Acids, 2019, 14: 114-130. doi: 10.1016/j.omtn.2018.11.006
|
[12] |
TANG J B. Flexor tendon injuries[J]. Clin Plast Surg, 2019, 46(3): 295-306. doi: 10.1016/j.cps.2019.02.003
|
[13] |
NEIDUSKI R L, POWELL R K. Flexor tendon rehabilitation in the 21st century: a systematic review[J]. J Hand Ther, 2019, 32(2): 165-174. doi: 10.1016/j.jht.2018.06.001
|
[14] |
安彪, 张哲敏, 段文旭, 等. 改良肌腱缝合技术预防屈肌腱粘连[J]. 中华手外科杂志, 2017, 33(6): 430-432. doi: 10.3760/cma.j.issn.1005-054X.2017.06.014
|
[15] |
NICHOLLS M, MANJOO A, SHAW P, et al. A comparison between rheological properties of intra-articular hyaluronic acid preparations and reported human synovial fluid[J]. Adv Ther, 2018, 35(4): 523-530. doi: 10.1007/s12325-018-0688-y
|
[16] |
TOSUN H B, GÜMÜŞTAŞSA, KOM M, et al. The effect of sodium hyaluronate plus sodium chondroitin sulfate solution on peritendinous adhesion and tendon healing: an experimental study[J]. Balkan Med J, 2016, 33(3): 258-266. doi: 10.5152/balkanmedj.2016.140172
|
[17] |
LIU C J, BAI J B, YU K L, et al. Biological amnion prevents flexor tendon adhesion in zone Ⅱ: a controlled, multicentre clinical trial[J]. Biomed Res Int, 2019, 2019: 2354325. http://www.researchgate.net/publication/332177778_Biological_Amnion_Prevents_Flexor_Tendon_Adhesion_in_Zone_II_A_Controlled_Multicentre_Clinical_Trial
|
[18] |
张波, 付凯, 郑宪友, 等. 局部联合应用透明质酸钠及5-氟尿嘧啶对兔肌腱粘连及愈合的影响[J]. 中华实验外科杂志, 2017, 34(8): 1371-1373. doi: 10.3760/cma.j.issn.1001-9030.2017.08.034
|
[19] |
LI J N, FENG X R, LIU B C, et al. Polymer materials for prevention of postoperative adhesion[J]. Acta Biomater, 2017, 61: 21-40. doi: 10.1016/j.actbio.2017.08.002
|
[20] |
FATEMI M J, SHIRANI S, SOBHANI R, et al. Prevention of peritendinous adhesion formation after the flexor tendon surgery in rabbits: a comparative study between use of local interferon-α, interferon-β, and 5-fluorouracil[J]. Ann Plast Surg, 2018, 80(2): 171-175. doi: 10.1097/SAP.0000000000001169
|
[21] |
严致远, 何俊薇, 胡晓龙, 等. 中药熏洗在慢性踝关节不稳自体腓骨短肌腱重建中的应用[J]. 实用临床医药杂志, 2020, 24(10): 106-109. https://www.cnki.com.cn/Article/CJFDTOTAL-XYZL202010027.htm
|
[22] |
GRAHAM J G, WANG M L, RIVLIN M, et al. Biologic and mechanical aspects of tendon fibrosis after injury and repair[J]. Connect Tissue Res, 2019, 60(1): 10-20. doi: 10.1080/03008207.2018.1512979
|
[23] |
ZHOU Y L, ZHANG L Z, ZHAO W X, et al. Nanoparticle-mediated delivery of TGF-β1 miRNA plasmid for preventing flexor tendon adhesion formation[J]. Biomaterials, 2013, 34(33): 8269-8278. doi: 10.1016/j.biomaterials.2013.07.072
|
[24] |
LOISELLE A E, YUKATA K, GEARY M B, et al. Development of antisense oligonucleotide (ASO) technology against Tgf-β signaling to prevent scarring during flexor tendon repair[J]. J Orthop Res, 2015, 33(6): 859-866. doi: 10.1002/jor.22890
|
[25] |
TAN Y, WU Q F, WU Q, et al. Thermal preconditioning may prevent tendon adhesion by up-regulating HSP72 in rats[J]. Cell Physiol Biochem, 2017, 42(4): 1623-1634. doi: 10.1159/000479403
|
[26] |
ZHENG W, QIAN Y, CHEN S, et al. Rapamycin protects against peritendinous fibrosis through activation of autophagy[J]. Front Pharmacol, 2018, 9: 402. doi: 10.3389/fphar.2018.00402
|
[27] |
ZHENG W, SONG J L, ZHANG Y Z, et al. Metformin prevents peritendinous fibrosis by inhibiting transforming growth factor-β signaling[J]. Oncotarget, 2017, 8(60): 101784-101794. doi: 10.18632/oncotarget.21695
|
[28] |
KANG Y M, LEE S K, CHUN Y M, et al. Follistatin mitigates myofibroblast differentiation and collagen synthesis of fibroblasts from scar tissue around injured flexor tendons[J]. Yonsei Med J, 2020, 61(1): 85-93. doi: 10.3349/ymj.2020.61.1.85
|
[29] |
NIVEDHITHA SUNDARAM M, DEEPTHI S, MONY U, et al. Chitosan hydrogel scaffold reinforced with twisted poly(l lactic acid) aligned microfibrous bundle to mimic tendon extracellular matrix[J]. Int J Biol Macromol, 2019, 122: 37-44. doi: 10.1016/j.ijbiomac.2018.10.151
|
[30] |
LIAO J C Y, HE M, GAN A W T, et al. The effects of bi-functional anti-adhesion scaffolds on flexor tendon healing in a rabbit model[J]. J Biomed Mater Res B Appl Biomater, 2018, 106(7): 2605-2614. doi: 10.1002/jbm.b.34077
|
[31] |
CHOU P Y, CHEN S H, CHEN C H, et al. Thermo-responsive in situ forming hydrogels as barriers to prevent post-operative peritendinous adhesion[J]. Acta Biomater, 2017, 63: 85-95. doi: 10.1016/j.actbio.2017.09.010
|
[32] |
HSU S H, DAI L G, HUNG Y M, et al. Evaluation and characterization of waterborne biodegradable polyurethane films for the prevention of tendon postoperative adhesion[J]. Int J Nanomedicine, 2018, 13: 5485-5497. doi: 10.2147/IJN.S169825
|
[33] |
GALVEZ M G, CROWE C, FARNEBO S, et al. Tissue engineering in flexor tendon surgery: current state and future advances[J]. J Hand Surg Eur Vol, 2014, 39(1): 71-78. doi: 10.1177/1753193413512432
|
[34] |
CAPELLA-MONSONÍS H, KELLY J, KEARNS S, et al. Decellularised porcine peritoneum as a tendon protector sheet[J]. Biomed Mater, 2019, 14(4): 044102. doi: 10.1088/1748-605X/ab2301
|
[35] |
PAGÁN A, AZNAR-CERVANTES S D, PÉREZ-RIGUEIRO J, et al. Potential use of silkworm gut fiber braids as scaffolds for tendon and ligament tissue engineering[J]. J Biomed Mater Res B Appl Biomater, 2019, 107(7): 2209-2215. doi: 10.1002/jbm.b.34300
|
[36] |
顾悦. 促进肌腱愈合及预防肌腱粘连的研究进展[J]. 系统医学, 2017, 2(10): 166-168. https://www.cnki.com.cn/Article/CJFDTOTAL-XTYX201710063.htm
|
[37] |
蔡传栋, 路明宽, 王伟, 等. 肌腱粘连机制与预防的研究进展[J]. 国际骨科学杂志, 2020, 41(3): 129-133. doi: 10.3969/j.issn.1673-7083.2020.03.001
|
[38] |
王建, 张文龙, 孙文弢, 等. 手指屈肌腱粘连的研究进展[J]. 中华解剖与临床杂志, 2017, 22(5): 437-440. doi: 10.3760/cma.j.issn.2095-7041.2017.05.019
|
[39] |
王斌, 顾加祥. 预防肌腱粘连研究进展[J]. 国际骨科学杂志, 2019, 40(5): 280-284. doi: 10.3969/j.issn.1673-7083.2019.05.006
|
[40] |
ZHAO X, JIANG S C, LIU S, et al. Optimization of intrinsic and extrinsic tendon healing through controllable water-soluble mitomycin-C release from electrospun fibers by mediating adhesion-related gene expression[J]. Biomaterials, 2015, 61: 61-74. doi: 10.1016/j.biomaterials.2015.05.012
|
[41] |
SHALUMON K T, SHEU C, CHEN C H, et al. Multi-functional electrospun antibacterial core-shell nanofibrous membranes for prolonged prevention of post-surgical tendon adhesion and inflammation[J]. Acta Biomater, 2018, 72: 121-136. doi: 10.1016/j.actbio.2018.03.044
|
[42] |
CHEN C T, CHEN C H, SHEU C, et al. Ibuprofen-loaded hyaluronic acid nanofibrous membranes for prevention of postoperative tendon adhesion through reduction of inflammation[J]. Int J Mol Sci, 2019, 20(20): E5038. doi: 10.3390/ijms20205038
|
[43] |
CHEN C H, CHEN S H, SHALUMON K T, et al. Dual functional core-sheath electrospun hyaluronic acid/polycaprolactone nanofibrous membranes embedded with silver nanoparticles for prevention of peritendinous adhesion[J]. Acta Biomater, 2015, 26: 225-235. doi: 10.1016/j.actbio.2015.07.041
|
[44] |
LIU S, QIN M J, HU C M, et al. Tendon healing and anti-adhesion properties of electrospun fibrous membranes containing bFGF loaded nanoparticles[J]. Biomaterials, 2013, 34(19): 4690-4701. doi: 10.1016/j.biomaterials.2013.03.026
|
[45] |
姜士超. 负载塞来昔布的静电纺PELA纤维膜防止肌腱粘连及相关机制[D]. 上海: 上海交通大学, 2015.
|
[46] |
LI L F, ZHENG X Y, FAN D P, et al. Release of celecoxib from a bi-layer biomimetic tendon sheath to prevent tissue adhesion[J]. Mater Sci Eng C Mater Biol Appl, 2016, 61: 220-226. doi: 10.1016/j.msec.2015.12.028
|