ZHANG Ze, GAO Bo, SHEN Guiquan. Research progress in application of cardiac magnetic resonance imaging in pregnant women complicated with heart diseases[J]. Journal of Clinical Medicine in Practice, 2021, 25(11): 114-119. DOI: 10.7619/jcmp.20211028
Citation: ZHANG Ze, GAO Bo, SHEN Guiquan. Research progress in application of cardiac magnetic resonance imaging in pregnant women complicated with heart diseases[J]. Journal of Clinical Medicine in Practice, 2021, 25(11): 114-119. DOI: 10.7619/jcmp.20211028

Research progress in application of cardiac magnetic resonance imaging in pregnant women complicated with heart diseases

More Information
  • Received Date: March 10, 2021
  • Available Online: June 14, 2021
  • Published Date: June 14, 2021
  • Heart diseases can increase the risk of pregnancy. The feature of pregnancy is the change of multiple organs and systems, and the safety of fetus should be considered in the process of diagnosis. Cardiac magnetic resonance (CMR) imaging has the advantages of no radiation and trauma, which can not only well display the structures and functions of the heart, the characteristics of myocardial tissue, blood flow, and myocardial scar and fibrosis, but also provide the references for the risk stratification and prognosis of the disease. At present, CMR plays a more and more important role in diagnosis of congenital heart disease, valvular heart disease, coronary artery disease, cardiomyopathy and other cardiovascular diseases. This study reviewed the progress in application of CMR in pregnant women with heart diseases.
  • [1]
    VIRANI S S, ALONSO A, BENJAMIN E J, et al. Heart disease and stroke statistics-2020 update: a report from the American heart association[J]. Circulation, 2020, 141(9): e67-e492. https://pubmed.ncbi.nlm.nih.gov/31992061/
    [2]
    CREANGA A A, BERG C J, SYVERSON C, et al. Pregnancy-related mortality in the United States, 2006-2010[J]. Obstet Gynecol, 2015, 125(1): 5-12. doi: 10.1097/AOG.0000000000000564
    [3]
    on Pregnancy P T F, Obstetricians A C o, Gynecologists. ACOG practice bulletin No. 212: pregnancy and heart disease[J]. Obstetrics and gynecology, 2019, 133(5): e320-e356. doi: 10.1097/AOG.0000000000003243
    [4]
    CREANGA A A, SYVERSON C, SEED K, et al. Pregnancy-related mortality in the United States, 2011-2013[J]. Obstet Gynecol, 2017, 130(2): 366-373. doi: 10.1097/AOG.0000000000002114
    [5]
    REGITZ-ZAGROSEK V, ROOS-HESSELINK J W, BAUERSACHS J, et al. 2018 ESC Guidelines for the management of cardiovascular diseases during pregnancy[J]. Eur Heart J, 2018, 39(34): 3165-3241. doi: 10.1093/eurheartj/ehy340
    [6]
    NII M, ISHIDA M, DOHI K, et al. Myocardial tissue characterization and strain analysis in healthy pregnant women using cardiovascular magnetic resonance native T1 mapping and feature tracking technique[J]. J Cardiovasc Magn Reson, 2018, 20(1): 52. doi: 10.1186/s12968-018-0476-5
    [7]
    KELLY D, AMADI A. Serial pressure gradients across a thoracic coarctation of the aorta during pregnancy[J]. Eur J Echocardiogr, 2005, 6(4): 288-290. doi: 10.1016/j.euje.2004.10.005
    [8]
    DIAS R R, MEJIA O A V, FIORELLI A I, et al. Unexpected finding during pregnancy[J]. Ann Thorac Surg, 2009, 87(6): 1962. doi: 10.1016/j.athoracsur.2008.09.018
    [9]
    BARUTEAU A E, LEURENT G, MARTINS R P, et al. Peripartum cardiomyopathy in the era of cardiac magnetic resonance imaging: first results and perspectives[J]. Int J Cardiol, 2010, 144(1): 143-145. doi: 10.1016/j.ijcard.2008.12.153
    [10]
    LEURENT G, BARUTEAU A E, LARRALDE A, et al. Contribution of cardiac MRI in the comprehension of peripartum cardiomyopathy pathogenesis[J]. Int J Cardiol, 2009, 132(3): e91-e93. doi: 10.1016/j.ijcard.2007.12.012
    [11]
    OOSTERHOF T, VRIEND J W J, SPIJKERBOER A M, et al. Cardiovascular magnetic resonance in a pregnant patient with absent pulmonary valve syndrome[J]. Int J Cardiovasc Imaging, 2007, 23(2): 249-252. doi: 10.1007/s10554-006-9150-3
    [12]
    KIM T H, KIM Y M, HAN M Y, et al. Perinatal sonographic diagnosis of cardiac fibroma with MR imaging correlation[J]. AJR Am J Roentgenol, 2002, 178(3): 727-729. doi: 10.2214/ajr.178.3.1780727
    [13]
    RAMAGE K, GRABOWSKA K, SILVERSIDES C, et al. Association of adult congenital heart disease with pregnancy, maternal, and neonatal outcomes[J]. JAMA Netw Open, 2019, 2(5): e193667. doi: 10.1001/jamanetworkopen.2019.3667
    [14]
    CANOBBIO M M, WARNES C A, ABOULHOSN J, et al. Management of pregnancy in patients with complex congenital heart disease: a scientific statement for healthcare professionals from the American heart association[J]. Circulation, 2017, 135(8): e50-e87. http://www.ncbi.nlm.nih.gov/pubmed/28082385
    [15]
    JIMENEZ-JUAN L, KRIEGER E V, VALENTE A M, et al. Cardiovascular magnetic resonance imaging predictors of pregnancy outcomes in women with coarctation of the aorta[J]. Eur Heart J Cardiovasc Imaging, 2014, 15(3): 299-306. doi: 10.1093/ehjci/jet161
    [16]
    TZIFA A, POLYMEROU I, LOGGITSI D. Solely MRI-guided cardiac catheterization for assessment of pulmonary hypertension in a pregnant lady with undiagnosed congenital heart disease[J]. Case Rep Cardiol, 2020, 2020: 1-6. http://www.researchgate.net/publication/341770956_Solely_MRI-Guided_Cardiac_Catheterization_for_Assessment_of_Pulmonary_Hypertension_in_a_Pregnant_Lady_with_Undiagnosed_Congenital_Heart_Disease
    [17]
    VELASCO FORTE M N, ROUJOL S, RUIJSINK B, et al. MRI for guided right and left heart cardiac catheterization: a prospective study in congenital heart disease[J]. J Magn Reson Imaging, 2021, 53(5): 1446-1457. doi: 10.1002/jmri.27426
    [18]
    RIZK J. 4D flow MRI applications in congenital heart disease[J]. Eur Radiol, 2021, 31(2): 1160-1174. doi: 10.1007/s00330-020-07210-z
    [19]
    JEONG D, ANAGNOSTOPOULOS P V, ROLDAN-ALZATE A, et al. Ventricular kinetic energy may provide a novel noninvasive way to assess ventricular performance in patients with repaired tetralogy of Fallot[J]. J Thorac Cardiovasc Surg, 2015, 149(5): 1339-1347. doi: 10.1016/j.jtcvs.2014.11.085
    [20]
    SJÖBERG P, BIDHULT S, BOCK J, et al. Disturbed left and right ventricular kinetic energy in patients with repaired tetralogy of Fallot: pathophysiological insights using 4D-flow MRI[J]. Eur Radiol, 2018, 28(10): 4066-4076. doi: 10.1007/s00330-018-5385-3
    [21]
    ROBINSON J D, ROSE M J, JOH M, et al. 4-D flow magnetic-resonance-imaging-derived energetic biomarkers are abnormal in children with repaired tetralogy of Fallot and associated with disease severity[J]. Pediatr Radiol, 2019, 49(3): 308-317. doi: 10.1007/s00247-018-4312-8
    [22]
    BLANKEN C P S, FARAG E S, BOEKHOLDT S M, et al. Advanced cardiac MRI techniques for evaluation of left-sided valvular heart disease[J]. J Magn Reson Imaging, 2018, 48(2): 318-329. doi: 10.1002/jmri.26204
    [23]
    GOTSCHY A, VON DEUSTER C, WEBER L, et al. CMR diffusion tensor imaging provides novel imaging markers of adverse myocardial remodeling in aortic Stenosis[J]. JACC Cardiovasc Imaging, 2021. http://www.sciencedirect.com/science/article/pii/S1936878X21000590
    [24]
    GOTSCHY A, VON DEUSTER C, VAN GORKUM R J H, et al. Characterizing cardiac involvement in amyloidosis using cardiovascular magnetic resonance diffusion tensor imaging[J]. J Cardiovasc Magn Reson, 2019, 21(1): 56. doi: 10.1186/s12968-019-0563-2
    [25]
    ISMAIL S, WONG C, RAJAN P, et al. ST-elevation acute myocardial infarction in pregnancy: 2016 update[J]. Clin Cardiol, 2017, 40(6): 399-406. doi: 10.1002/clc.22655
    [26]
    CAMPBELL K H, TWEET M S. Coronary disease in pregnancy: myocardial infarction and spontaneous coronary artery dissection[J]. Clin Obstet Gynecol, 2020, 63(4): 852-867. doi: 10.1097/GRF.0000000000000558
    [27]
    CHANDRASEKHAR J, THAKKAR J, STAROVOYTOV A, et al. Characteristics of spontaneous coronary artery dissection on cardiac magnetic resonance imaging[J]. Cardiovasc Diagn Ther, 2020, 10(3): 636-638. doi: 10.21037/cdt.2020.02.01
    [28]
    KAWEL-BOEHM N, KRONMAL R, ENG J, et al. Left ventricular mass at MRI and long-term risk of cardiovascular events: the multi-ethnic study of atherosclerosis (MESA)[J]. Radiology, 2019, 293(1): 107-114. doi: 10.1148/radiol.2019182871
    [29]
    KANAL E, BARKOVICH A J, BELL C, et al. ACR guidance document for safe MR practices: 2007[J]. Am J Roentgenol, 2007, 188(6): 1447-1474. doi: 10.2214/AJR.06.1616
    [30]
    WEBB J A, THOMSEN H S, MORCOS S K, et al. The use of iodinated and gadolinium contrast media during pregnancy and lactation[J]. Eur Radiol, 2005, 15(6): 1234-1240. doi: 10.1007/s00330-004-2583-y
    [31]
    ROFSKY N M, WEINREB J C, LITT A W. Quantitative analysis of gadopentetate dimeglumine excreted in breast milk[J]. J Magn Reson Imaging, 1993, 3(1): 131-132. doi: 10.1002/jmri.1880030122
    [32]
    SCHELBERT E B, ELKAYAM U, COOPER L T, et al. Myocardial damage detected by late gadolinium enhancement cardiac magnetic resonance is uncommon in peripartum cardiomyopathy[J]. J Am Heart Assoc, 2017, 6(4): e005472. http://pubmedcentralcanada.ca/pmcc/articles/PMC5533034/
    [33]
    REGITZ-ZAGROSEK V, ROOS-HESSELINK J W, BAUERSACHS J, et al. 2018 esc guidelines for the management of cardiovascular diseases during pregnancyThe task force for the management of cardiovascular diseases during pregnancy of the European society of cardiology (esc)[J]. Eur Heart J, 2018, 39(34): 3165-3241. doi: 10.1093/eurheartj/ehy340
    [34]
    BAUERSACHS J, KÖNIG T, VAN DER MEER P, et al. Pathophysiology, diagnosis and management of peripartum cardiomyopathy: a position statement from the Heart Failure Association of the European Society of Cardiology Study Group on peripartum cardiomyopathy[J]. Eur J Heart Fail, 2019, 21(7): 827-843. doi: 10.1002/ejhf.1493
    [35]
    BOZKURT B, COLVIN M, COOK J, et al. Current diagnostic and treatment strategies for specific dilated cardiomyopathies: a scientific statement from the American heart association[J]. Circulation, 2016, 134(23): e579-e646. http://www.ncbi.nlm.nih.gov/pubmed/27832612
    [36]
    KAWANO H, TSUNETO A, KOIDE Y, et al. Magnetic resonance imaging in a patient with peripartum cardiomyopathy[J]. Intern Med, 2008, 47(2): 97-102. doi: 10.2169/internalmedicine.47.0316
    [37]
    MARMURSZTEJN J, VIGNAUX O, GOFFINET F, et al. Delayed-enhanced cardiac magnetic resonance imaging features in peripartum cardiomyopathy[J]. Int J Cardiol, 2009, 137(3): e63-e64. doi: 10.1016/j.ijcard.2009.04.028
    [38]
    KOLTE D, KHERA S, ARONOW W S, et al. Temporal trends in incidence and outcomes of peripartum cardiomyopathy in the United States: a nationwide population-based study[J]. J Am Heart Assoc, 2014, 3(3): e001056. http://europepmc.org/abstract/med/24901108
    [39]
    ELKAYAM U. Clinical characteristics of peripartum cardiomyopathy in the United States: diagnosis, prognosis, and management[J]. J Am Coll Cardiol, 2011, 58(7): 659-670. doi: 10.1016/j.jacc.2011.03.047
    [40]
    WEINSAFT J W, KIM R J, ROSS M, et al. Contrast-enhanced anatomic imaging as compared to contrast-enhanced tissue characterization for detection of left ventricular Thrombus[J]. JACC Cardiovasc Imaging, 2009, 2(8): 969-979. doi: 10.1016/j.jcmg.2009.03.017
    [41]
    ERSBØLL A S, BOJER A S, HAUGE M G, et al. Long-term cardiac function after peripartum cardiomyopathy and preeclampsia: a Danish nationwide, clinical follow-up study using maximal exercise testing and cardiac magnetic resonance imaging[J]. J Am Heart Assoc, 2018, 7(20): e008991. http://www.ncbi.nlm.nih.gov/pubmed/30371259
    [42]
    VAIDYA V R, ARORA S, PATEL N, et al. Burden of arrhythmia in pregnancy[J]. Circulation, 2017, 135(6): 619-621. doi: 10.1161/CIRCULATIONAHA.116.026681
    [43]
    MAGTIBAY K, BEHESHTI M, FOOMANY F H, et al. Feature-based MRI data fusion for cardiac arrhythmia studies[J]. Comput Biol Med, 2016, 72: 13-21. doi: 10.1016/j.compbiomed.2016.02.006
    [44]
    GARCIA J, SHEITT H, BRISTOW M S, et al. Left atrial Vortex size and velocity distributions by 4D flow MRI in patients with paroxysmal atrial fibrillation: Associations with age and CHA2DS2-VASc risk score[J]. J Magn Reson Imaging, 2020, 51(3): 871-884. doi: 10.1002/jmri.26876
    [45]
    EIRICH P, WECH T, HEIDENREICH J F, et al. Cardiac real-time MRI using a pre-emphasized spiral acquisition based on the gradient system transfer function[J]. Magn Reson Med, 2021, 85(5): 2747-2760. doi: 10.1002/mrm.28621

Catalog

    Article views (441) PDF downloads (15) Cited by()

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return