Citation: | WEI Xin, LIU Xia, SHI Lin, YUN Fen, JIA Yongfeng. Effect of fucosyltransferase 8 expression on immunecell infiltration and survival prognosis in breast cancer[J]. Journal of Clinical Medicine in Practice, 2021, 25(17): 76-81, 87. DOI: 10.7619/jcmp.20211784 |
[1] |
LI J, GAO C, LIU C, et al. Four lncRNAs associated with breast cancer prognosis identified by coexpression network analysis[J]. J Cell Physiol, 2019, 234(8): 14019-14030. doi: 10.1002/jcp.28089
|
[2] |
LI F, ZHAO S, CUI Y, et al. α1, 6-Fucosyltransferase (FUT8) regulates the cancer-promoting capacity of cancer-associated fibroblasts (CAFs) by modifying EGFR core fucosylation (CF) in non-small cell lung cancer (NSCLC)[J]. Am J Cancer Res, 2020, 10(3): 816-837.
|
[3] |
TU C F, WU M Y, LIN Y C, et al. FUT8 promotes breast cancer cell invasiveness by remodeling TGF-β receptor core fucosylation[J]. Breast Cancer Res, 2017, 19(1): 111. doi: 10.1186/s13058-017-0904-8
|
[4] |
LI T, FAN J, WANG B, et al. TIMER: a web server for comprehensive analysis of tumor-infiltrating immune cells[J]. Cancer Res, 2017, 77(21): e108-e110. doi: 10.1158/0008-5472.CAN-17-0307
|
[5] |
JJÉZÉQUEL P, GOURAUD W, BEN AZZOUZ F, et al. bc-GenExMiner 4.5: new mining module computes breast cancer differential gene expression analyses[J]. Database (Oxford), 2021, 2021.
|
[6] |
AGRAWAL P, FONTANALS-CIRERA B, SOKOLOVA E, et al. A systems biology approach identifies FUT8 as a driver of melanoma metastasis[J]. Cancer Cell, 2017, 31(6): 804-819. doi: 10.1016/j.ccell.2017.05.007
|
[7] |
XIANG T, YANG G, LIU X, et al. Alteration of N-glycan expression profile and glycan pattern of glycoproteins in human hepatoma cells after HCV infection[J]. Biochim Biophys Acta Gen Subj, 2017, 1861(5 pt a): 1036-1045. http://www.onacademic.com/detail/journal_1000039821081510_57b1.html
|
[8] |
QUAIL D F, JOYCE J A. Microenvironmental regulation of tumor progression and metastasis[J]. Nat Med, 2013, 19(11): 1423-1437. doi: 10.1038/nm.3394
|
[9] |
NGAMBENJAWONG C, GUSTAFSON H H, PUN S H. Progress in tumor-associated macrophage (TAM)-targeted therapeutics[J]. Adv Drug Deliv Rev, 2017, 114: 206-221. doi: 10.1016/j.addr.2017.04.010
|
[10] |
FREY D M, DROESER R A, VIEHL C T, et al. High frequency of tumor-infiltrating FOXP3(+) regulatory T cells predicts improved survival in mismatch repair-proficient colorectal cancer patients[J]. Int J Cancer, 2010, 126(11): 2635-2643.
|
[11] |
DE SIMONE M, ARRIGONI A, ROSSETTI G, et al. Transcriptional landscape of human tissue lymphocytes unveils uniqueness of tumor-infiltrating T regulatory cells[J]. Immunity, 2016, 45(5): 1135-1147. doi: 10.1016/j.immuni.2016.10.021
|
[12] |
O′DONNELL J S, MADORE J, LI X Y, et al. Tumor intrinsic and extrinsic immune functions of CD155[J]. Semin Cancer Biol, 2020, 65: 189-196. doi: 10.1016/j.semcancer.2019.11.013
|
[13] |
SANCHEZ-CORREA B, VALHONDO I, HASSOUNEH F, et al. DNAM-1 and the TIGIT/PVRIG/TACTILE Axis: Novel Immune Checkpoints for Natural Killer Cell-Based Cancer Immunotherapy[J]. Cancers (Basel), 2019, 11(6): 877. doi: 10.3390/cancers11060877
|
[14] |
MAHNKE K, ENK A H. TIGIT-CD155 interactions in melanoma: a novel Co-inhibitory pathway with potential for clinical intervention[J]. J Invest Dermatol, 2016, 136(1): 9-11. doi: 10.1016/j.jid.2015.10.048
|