Citation: | XU Jiawei, CHEN Yuqiu, WANG Wenyi, GU Jun. Identification of PLK4 as a key prognostic gene in breast cancer by bioinformatics analysis[J]. Journal of Clinical Medicine in Practice, 2021, 25(23): 69-76, 81. DOI: 10.7619/jcmp.20213104 |
[1] |
World Health Organization. Latest global cancer data: cancer burden rises to 19.3 million new cases and 10.0 million cancer deaths in 2020[EB/OL]. https://www.iarc.fr/fr/news-events/latest-global-cancer-data-cancer-burden-rises-to-19-3-million-new-cases-and-10-0-million-cancer-deaths-in-2020/.
|
[2] |
LEMANSKI C, BOURGIER C, DRAGHICI R, et al. Intraoperative partial irradiation for highly selected patients with breast cancer: Results of the INTRAOBS prospective study[J]. Cancer Radiother, 2020, 24(2): 114-119. doi: 10.1016/j.canrad.2020.01.007
|
[3] |
ZITOUNI S, NABAIS C, JANA S C, et al. Polo-like kinases: structural variations lead to multiple functions[J]. Nat Rev Mol Cell Biol, 2014, 15(7): 433-452. doi: 10.1038/nrm3819
|
[4] |
UEDA A, OIKAWA K, FUJITA K, et al. Therapeutic potential of PLK1 inhibition in triple-negative breast cancer[J]. Lab Invest, 2019, 99(9): 1275-1286. doi: 10.1038/s41374-019-0247-4
|
[5] |
QIAN Y Z, HUA E, BISHT K, et al. Inhibition of Polo-like kinase 1 prevents the growth of metastatic breast cancer cells in the brain[J]. Clin Exp Metastasis, 2011, 28(8): 899-908. doi: 10.1007/s10585-011-9421-9
|
[6] |
PITT J J, RIESTER M, ZHENG Y, et al. Characterization of Nigerian breast cancer reveals prevalent homologous recombination deficiency and aggressive molecular features[J]. Nat Commun, 2018, 9(1): 4181. doi: 10.1038/s41467-018-06616-0
|
[7] |
段佳君, 邹天宁, 张季, 等. ER阳性乳腺癌中Efp和Plk3蛋白表达相关性探讨[J]. 中国癌症杂志, 2016, 26(10): 848-853.
|
[8] |
MANO R, DUZGOL C, GANAT M, et al. Somatic mutations as preoperative predictors of metastases in patients with localized clear cell renal cell carcinoma-An exploratory analysis[J]. Urol Oncol, 2021, 39(11): e17-e24.
|
[9] |
LI Z, DAI K, WANG C, et al. Expression of polo-like kinase 4(PLK4) in breast cancer and its response to taxane-based neoadjuvant chemotherapy[J]. J Cancer, 2016, 7(9): 1125-1132. doi: 10.7150/jca.14307
|
[10] |
NABAIS C, PESSOA D, DE-CARVALHO J, et al. PLK4 triggers autonomous de novo centriole biogenesis and maturation[J]. J Cell Biol, 2021, 220(5): e202008090. doi: 10.1083/jcb.202008090
|
[11] |
LEE K S, PARK J E, IL AHN J, et al. A self-assembled cylindrical platform for PLK4-induced centriole biogenesis[J]. Open Biol, 2020, 10(8): 200102. doi: 10.1098/rsob.200102
|
[12] |
TANG Z, LI C, KANG B, et al. GEPIA: a web server for cancer and normal gene expression profiling and interactive analyses[J]. Nucleic Acids Res, 2017, 45(w1): W98-W102. doi: 10.1093/nar/gkx247
|
[13] |
UHLÉN M, FAGERBERG L, HALLSTRÖM B M, et al. Proteomics. Tissue-based map of the human proteome[J]. Science, 2015, 347(6220): 1260419. doi: 10.1126/science.1260419
|
[14] |
LI T W, FU J X, ZENG Z X, et al. TIMER2. 0 for analysis of tumor-infiltrating immune cells[J]. Nucleic Acids Res, 2020, 48(W1): W509-W514. doi: 10.1093/nar/gkaa407
|
[15] |
YANG S, KIM C Y, HWANG S, et al. COEXPEDIA: exploring biomedical hypotheses via co-expressions associated with medical subject headings (MeSH)[J]. Nucleic Acids Res, 2017, 45(d1): D389-D396. doi: 10.1093/nar/gkw868
|
[16] |
CHEN X W, ZHANG D W, JIANG F, et al. Prognostic prediction using a stemness index-related signature in a cohort of gastric cancer[J]. Front Mol Biosci, 2020, 7: 570702. doi: 10.3389/fmolb.2020.570702
|
[17] |
ZENG Y, LI N H, LIU W, et al. Analyses of expressions and prognostic values of Polo-like kinases in non-small cell lung cancer[J]. J Cancer Res Clin Oncol, 2020, 146(10): 2447-2460. doi: 10.1007/s00432-020-03288-6
|
[18] |
KIM D H, AHN J S, HAN H J, et al. Cep131 overexpression promotes centrosome amplification and colon cancer progression by regulating PLK4 stability[J]. Cell Death Dis, 2019, 10(8): 570. doi: 10.1038/s41419-019-1778-8
|
[19] |
BAO J, YU Y, CHEN J N, et al. MiR-126 negatively regulates PLK-4 to impact the development of hepatocellular carcinoma via ATR/CHEK1 pathway[J]. Cell Death Dis, 2018, 9(10): 1045. doi: 10.1038/s41419-018-1020-0
|
[20] |
ZHAO Y, WANG X. PLK4: a promising target for cancer therapy[J]. J Cancer Res Clin Oncol, 2019, 145(10): 2413-2422. doi: 10.1007/s00432-019-02994-0
|
[21] |
ABREU P, IVANICS T, JIANG K R, et al. Novel biomarker for hepatocellular carcinoma: high tumoral PLK-4 expression is associated with better prognosis in patients without microvascular invasion[J]. HPB (Oxford), 2021, 23(3): 359-366. doi: 10.1016/j.hpb.2020.07.003
|
[22] |
KAWAKAMI M, MUSTACHIO L M, ZHENG L, et al. Polo-like kinase 4 inhibition produces polyploidy and apoptotic death of lung cancers[J]. PNAS, 2018, 115(8): 1913-1918. doi: 10.1073/pnas.1719760115
|
[23] |
KAZAZIAN K, GO C, WU H, et al. PLK4 promotes cancer invasion and metastasis through Arp2/3 complex regulation of the actin cytoskeleton[J]. Cancer Res, 2017, 77(2): 434-447. doi: 10.1158/0008-5472.CAN-16-2060
|
[24] |
ROSARIO C O, KAZAZIAN K, ZIH F S, et al. A novel role for PLK4 in regulating cell spreading and motility[J]. Oncogene, 2015, 34(26): 3441-3451. doi: 10.1038/onc.2014.275
|
[25] |
MORRIS E J, KAWAMURA E, GILLESPIE J A, et al. Stat3 regulates centrosome clustering in cancer cells via Stathmin/PLK1[J]. Nat Commun, 2017, 8: 15289. doi: 10.1038/ncomms15289
|
[26] |
LI Z H, DAI K, WANG C J, et al. Expression of polo-like kinase 4(PLK4) in breast cancer and its response to taxane-based neoadjuvant chemotherapy[J]. J Cancer, 2016, 7(9): 1125-1132. doi: 10.7150/jca.14307
|
[27] |
ZHANG Y, TIAN J, QU C, et al. A look into the link between centrosome amplification and breast cancer[J]. Biomed Pharmacother, 2020, 132: 110924. doi: 10.1016/j.biopha.2020.110924
|
[28] |
DENU R A, ZASADIL L M, KANUGH C, et al. Centrosome amplification induces high grade features and is prognostic of worse outcomes in breast cancer[J]. BMC Cancer, 2016, 16: 47. doi: 10.1186/s12885-016-2083-x
|
[29] |
OGDEN A, RIDA P C G, ANEJA R. Centrosome amplification: a suspect in breast cancer and racial disparities[J]. Endocr Relat Cancer, 2017, 24(9): T47-T64. doi: 10.1530/ERC-17-0072
|
[30] |
VITRE B, HOLLAND A J, KULUKIAN A, et al. Chronic centrosome amplification without tumorigenesis[J]. PNAS, 2015, 112(46): E6321-E6330. doi: 10.1073/pnas.1519388112
|
[31] |
PRESS M F, XIE B, DAVENPORT S, et al. Role for polo-like kinase 4 in mediation of cytokinesis[J]. Proc Natl Acad Sci USA, 2019, 116(23): 11309-11318. doi: 10.1073/pnas.1818820116
|
[32] |
TANG J N, LUO Y W, TIAN Z L, et al. TRIM11 promotes breast cancer cell proliferation by stabilizing estrogen receptor Α[J]. Neoplasia, 2020, 22(9): 343-351. doi: 10.1016/j.neo.2020.06.003
|
[33] |
LIU Z, ZHANG J, XU J, et al. RNF168 facilitates oestrogen receptor ɑ transcription and drives breast cancer proliferation[J]. J Cell Mol Med, 2018, 22(9): 4161-4170. doi: 10.1111/jcmm.13694
|
[34] |
MARINA M. Nek2 and PLK4: prognostic markers, drivers of breast tumorigenesis and drug resistance[J]. Front Biosci, 2014, 19(2): 352. doi: 10.2741/4212
|
[35] |
KONG X Y, ZHANG K, WANG X Y, et al. Mechanism of trastuzumab resistance caused by HER-2 mutation in breast carcinomas[J]. Cancer Manag Res, 2019, 11: 5971-5982. doi: 10.2147/CMAR.S194137
|
[36] |
DE OLIVEIRA TAVEIRA M, NABAVI S, WANG Y, et al. Genomic characteristics of trastuzumab-resistant Her2-positive metastatic breast cancer[J]. J Cancer Res Clin Oncol, 2017, 143(7): 1255-1262. doi: 10.1007/s00432-017-2358-x
|
[37] |
CHAKRABARTY A, BHOLA N E, SUTTON C, et al. Trastuzumab-resistant cells rely on a HER2-PI3K-FoxO-survivin axis and are sensitive to PI3K inhibitors[J]. Cancer Res, 2013, 73(3): 1190-1200. doi: 10.1158/0008-5472.CAN-12-2440
|
[38] |
PEAKE B F, NAHTA R. Resistance to HER2-targeted therapies: a potential role for FOXM1[J]. Breast Cancer Manag, 2014, 3(5): 423-431. doi: 10.2217/bmt.14.33
|
[39] |
VARGAS-RONDÓN N, PÉREZ-MORA E, VILLEGAS V E, et al. Role of chromosomal instability and clonal heterogeneity in the therapy response of breast cancer cell lines[J]. Cancer Biol Med, 2020, 17(4): 970-985. doi: 10.20892/j.issn.2095-3941.2020.0028
|