Citation: | WANG Xiaoyuan, DU Meiling, ZHANG Pengxiang, LI Feixing, ZHANG Aiai, LI Fangjiang. Construction of three-level prevention and treatment system of exercise-induced sudden cardiac death based on artificial intelligence electrocardiogram remote recording[J]. Journal of Clinical Medicine in Practice, 2021, 25(24): 65-68, 73. DOI: 10.7619/jcmp.20214072 |
[1] |
林达, 黄晓辉, 余捷, 等. 肥厚型心肌病MRI延迟强化率与心源性猝死风险的相关性分析[J]. 医学影像学杂志, 2019, 29(3): 373-377. https://www.cnki.com.cn/Article/CJFDTOTAL-XYXZ201903009.htm
|
[2] |
杨凤春, 李丹, 孙雪莲, 等. 联合NT-proBNP与QRS波群时限预测慢性心力衰竭致心源性猝死发生风险[J]. 临床和实验医学杂志, 2019, 18(14): 1538-1541. doi: 10.3969/j.issn.1671-4695.2019.14.024
|
[3] |
ATTIA Z I, NOSEWORTHY P A, LOPEZ-JIMENEZ F, et al. An artificial intelligence-enabled ECG algorithm for the identification of patients with atrial fibrillation during sinus rhythm: a retrospective analysis of outcome prediction[J]. Lancet, 2019, 394(10201): 861-867. doi: 10.1016/S0140-6736(19)31721-0
|
[4] |
张正华, 蔡雅倩, 韩丹, 等. 基于深度学习的肺结节筛检和定性诊断分析[J]. 肿瘤防治研究, 2020, 47(4): 283-287. doi: 10.3971/j.issn.1000-8578.2020.19.1107
|
[5] |
BAZARGANI R H, BESHARAT M A, EHSAN H B, et al. The efficacy of chronic disease self management programs and tele-health on psychosocial adjustment by increasing self-efficacy in patients with CABG[J]. Procedia Soc Behav Sci, 2011, 30: 830-834. doi: 10.1016/j.sbspro.2011.10.161
|
[6] |
王震, 程中伟, 邓华, 等. 埋藏式心脏转复除颤器用于心源性猝死一级预防患者全因死亡危险因素分析[J]. 中国心脏起搏与心电生理杂志, 2020, 34(1): 16-19. https://www.cnki.com.cn/Article/CJFDTOTAL-ZGXZ202001006.htm
|
[7] |
王震, 程中伟, 邓华, 等. 植入型心律转复除颤器对于射血分数减低性心力衰竭患者心源性猝死的预防作用研究[J]. 中国实用内科杂志, 2019, 39(9): 800-804. https://www.cnki.com.cn/Article/CJFDTOTAL-SYNK201909016.htm
|
[8] |
吴丹阳, 范忠才. 血清鸢尾素水平与急性心肌梗死合并射血分数保留型心力衰竭患者PCI术后心源性猝死的相关性研究[J]. 临床心血管病杂志, 2020, 36(12): 1104-1109. https://www.cnki.com.cn/Article/CJFDTOTAL-LCXB202012008.htm
|
[9] |
CHANDRA B S, SASTRY C S, JANA S. Robust heartbeat detection from multimodal data via CNN-based generalizable information fusion[J]. IEEE Trans Biomed Eng, 2019, 66(3): 710-717. doi: 10.1109/TBME.2018.2854899
|
[10] |
商鲁翔, 赵阳, 汤宝鹏. 常规12导联体表心电图信息对心脏性猝死的预测价值[J]. 中华心律失常学杂志, 2019, 23(3): 269-272. doi: 10.3760/cma.j.issn.1007-6638.2019.03.017
|
[11] |
PAIXÃO G M, RIBEIRO A H, LIMA E, et al. Ecg-age from artificial intelligence: a new predictor for mortality the code (clinical outcomes in digital electrocardiography) study[J]. J Am Coll Cardiol, 2020, 75(11): 3672. doi: 10.1016/S0735-1097(20)34299-6
|
[12] |
朱振叶, 殷洁. 多次体外电除颤复苏救治心脏性猝死的效果及其对患者血清因子水平的影响分析[J]. 心脑血管病防治, 2019, 19(5): 473-475. doi: 10.3969/j.issn.1009-816x.2019.05.029
|
[13] |
KIM Y, KIM J H, LEE M Y, et al. Premature ventricular contraction detection system from the 12 leads ECG by artificial intelligence[J]. Eur Heart J, 2020, 41(Supplement_2): 3448 http://www.researchgate.net/publication/347192917_Premature_ventricular_contraction_detection_system_from_the_12_leads_ECG_by_artificial_intelligence
|
[14] |
王洪瑞, 杨建利, 刘秀玲. 基于心电信号和回声状态网络的心源性猝死心拍预测[J]. 激光杂志, 2019, 40(9): 187-190. https://www.cnki.com.cn/Article/CJFDTOTAL-JGZZ201909041.htm
|
[15] |
MANDAL V, MUSSAH A R, JIN P, et al. Artificial intelligence-enabled traffic monitoring system[J]. Sustainability, 2020, 12(21): 9177. doi: 10.3390/su12219177
|
[16] |
杨建利. 基于深度学习的心血管疾病智能预测与精确诊断算法研究[D]. 保定: 河北大学, 2019. http://cdmd.cnki.com.cn/Article/CDMD-10075-1020610999.htm
|
[17] |
ABDALLA F Y O, WU L W, ULLAH H, et al. ECG arrhythmia classification using artificial intelligence and nonlinear and nonstationary decomposition[J]. Signal Image Video Process, 2019, 13(7): 1283-1291. doi: 10.1007/s11760-019-01479-4
|
1. |
尹馨,焦娟,常志红,夏迎龙,刘杰,关坤萍. 外周血白细胞分类模型的建立与应用. 实用临床医药杂志. 2023(03): 86-90 .
![]() | |
2. |
桂金杰,刘丽丽,李慧敏,赖丽娟,钟立芳. 心脏远程监护仪监测指标与阻塞性睡眠呼吸暂停低通气综合征严重程度的关系. 中国医学创新. 2023(12): 30-34 .
![]() | |
3. |
曹雨菡,李瑾,何民,王丹,陈伟. 基于ICF冠心病患者远程康复的Scoping综述. 中国康复理论与实践. 2023(04): 433-442 .
![]() | |
4. |
王志娟,谭琛. 基于心电图的人工智能在心脏性猝死中的预警作用. 中国临床医生杂志. 2023(08): 891-894 .
![]() | |
5. |
徐玉娇,邓力威,孙蒙恩,王勇. 健康中国背景下预防大学生运动猝死的理论模式构建. 当代体育科技. 2023(31): 158-161 .
![]() |