LI Yang, JIANG Lifeng, SUN Xu, LIU Huaimin. Research progress of immune checkpoint inhibitors based biotherapeutics in epidermal growth factor receptor mutant of non-small cell lung cancer[J]. Journal of Clinical Medicine in Practice, 2022, 26(2): 142-148. DOI: 10.7619/jcmp.20214607
Citation: LI Yang, JIANG Lifeng, SUN Xu, LIU Huaimin. Research progress of immune checkpoint inhibitors based biotherapeutics in epidermal growth factor receptor mutant of non-small cell lung cancer[J]. Journal of Clinical Medicine in Practice, 2022, 26(2): 142-148. DOI: 10.7619/jcmp.20214607

Research progress of immune checkpoint inhibitors based biotherapeutics in epidermal growth factor receptor mutant of non-small cell lung cancer

More Information
  • Received Date: November 22, 2021
  • Available Online: January 27, 2022
  • Published Date: January 27, 2022
  • In patients with epidermal growth factor receptor (EGFR) mutation, secondary resistance to EGFR tyrosine kinase inhibitors (EGFR-TKI) is inevitable. Immune checkpoint inhibitors (ICIs) are currently the mainstay of cancer therapy, including monoclonal antibodies against programmed cell death 1 (PD-1), programmed cell death ligand-1 (PD-L1) and cytotoxic T lymphocyte-associated protein 4 (CTLA-4), which can significantly improve survival and quality of life in patients with non-small cell lung cancer (NSCLC). However, NSCLC patients with EGFR mutations have a poor response to ICIs. Studies have shown that EGFR signaling pathway may influence anti-tumor immune response and tumor immune microenvironment. This paper reviewed the effects of EGFR signaling pathway on tumor immune response in tumor immune microenvironment, related prognostic indicators, current status of immunotherapy for patients with EGFR mutation and current clinical studies.
  • [1]
    SIEGEL R L, MILLER K D, FUCHS H E, et al. Cancer statistics, 2021[J]. CA Cancer J Clin, 2021, 71(1): 7-33. doi: 10.3322/caac.21654
    [2]
    SHI Y K, AU J S K, THONGPRASERT S, et al. A prospective, molecular epidemiology study of EGFR mutations in Asian patients with advanced non-small-cell lung cancer of adenocarcinoma histology (PIONEER)[J]. J Thorac Oncol, 2014, 9(2): 154-162. doi: 10.1097/JTO.0000000000000033
    [3]
    WU Y L, SAIJO N, THONGPRASERT S, et al. Efficacy according to blind independent central review: post-hoc analyses from the phase Ⅲ, randomized, multicenter, IPASS study of first-line gefitinib versus carboplatin/paclitaxel in Asian patients with EGFR mutation-positive advanced NSCLC[J]. Lung Cancer, 2017, 104: 119-125. doi: 10.1016/j.lungcan.2016.11.022
    [4]
    HERBST R S, GARON E B, KIM D W, et al. Five year survival update from KEYNOTE-010: pembrolizumab versus docetaxel for previously treated, programmed death-ligand 1-positive advanced NSCLC[J]. J Thorac Oncol, 2021, 16(10): 1718-1732. doi: 10.1016/j.jtho.2021.05.001
    [5]
    ETTINGER D S, WOOD D E, AISNER D L, et al. NCCN guidelines insights: non-small cell lung cancer, version 2. 2021[J]. J Natl Compr Canc Netw, 2021, 19(3): 254-266. doi: 10.6004/jnccn.2021.0013
    [6]
    DONG R F, ZHU M L, LIU M M, et al. EGFR mutation mediates resistance to EGFR tyrosine kinase inhibitors in NSCLC: from molecular mechanisms to clinical research[J]. Pharmacol Res, 2021, 167: 105583. doi: 10.1016/j.phrs.2021.105583
    [7]
    ABIKO K, MATSUMURA N, HAMANISHI J, et al. IFN-γ from lymphocytes induces PD-L1 expression and promotes progression of ovarian cancer[J]. Br J Cancer, 2015, 112(9): 1501-1509. doi: 10.1038/bjc.2015.101
    [8]
    GARCIA-DIAZ A, SHIN D S, MORENO B H, et al. Interferon receptor signaling pathways regulating PD-L1 and PD-L2 expression[J]. Cell Rep, 2017, 19(6): 1189-1201. doi: 10.1016/j.celrep.2017.04.031
    [9]
    JAIN R K. Normalizing tumor microenvironment to treat cancer: bench to bedside to biomarkers[J]. J Clin Oncol, 2013, 31(17): 2205-2218. doi: 10.1200/JCO.2012.46.3653
    [10]
    ROCHE P A, FURUTA K. The ins and outs of MHC class Ⅱ-mediated antigen processing and presentation[J]. Nat Rev Immunol, 2015, 15(4): 203-216. doi: 10.1038/nri3818
    [11]
    LIN K L, CHENG J N, YANG T, et al. EGFR-TKI down-regulates PD-L1 in EGFR mutant NSCLC through inhibiting NF-κb[J]. Biochem Biophys Res Commun, 2015, 463(1/2): 95-101.
    [12]
    SPRAGUE L, MUCCIOLI M, PATE M, et al. The interplay between surfaces and soluble factors define the immunologic and angiogenic properties of myeloid dendritic cells[J]. BMC Immunol, 2011, 12: 35. doi: 10.1186/1471-2172-12-35
    [13]
    KUMAGAI S, KOYAMA S, NISHIKAWA H. Antitumour immunity regulated by aberrant ERBB family signalling[J]. Nat Rev Cancer, 2021, 21(3): 181-197. doi: 10.1038/s41568-020-00322-0
    [14]
    YU S R, SHA H H, QIN X B, et al. EGFR E746-A750 deletion in lung cancer represses antitumor immunity through the exosome-mediated inhibition of dendritic cells[J]. Oncogene, 2020, 39(13): 2643-2657. doi: 10.1038/s41388-020-1182-y
    [15]
    LIU S Y, DONG Z Y, WU S P, et al. Clinical relevance of PD-L1 expression and CD8+ T cells infiltration in patients with EGFR-mutated and ALK-rearranged lung cancer[J]. Lung Cancer, 2018, 125: 86-92. doi: 10.1016/j.lungcan.2018.09.010
    [16]
    ZHAO C, SU C X, LI X F, et al. Association of CD8 T cell apoptosis and EGFR mutation in non-small lung cancer patients[J]. Thorac Cancer, 2020, 11(8): 2130-2136. doi: 10.1111/1759-7714.13504
    [17]
    AKBAY E A, KOYAMA S, CARRETERO J, et al. Activation of the PD-1 pathway contributes to immune escape in EGFR-driven lung tumors[J]. Cancer Discov, 2013, 3(12): 1355-1363. doi: 10.1158/2159-8290.CD-13-0310
    [18]
    ZHU G S, LI Y W, SHI R F, et al. Immune microenvironment comparation study between EGFR mutant and EGFR wild type lung adenocarcinoma patients based on TCGA database[J]. Zhongguo Fei Ai Za Zhi, 2021, 24(4): 236-244.
    [19]
    XIE X B, GHADIMI M P H, YOUNG E D, et al. Combining EGFR and mTOR blockade for the treatment of epithelioid sarcoma[J]. Clin Cancer Res, 2011, 17(18): 5901-5912. doi: 10.1158/1078-0432.CCR-11-0660
    [20]
    FENG P H, YU C T, CHEN K Y, et al. S100A9+ MDSC and TAM-mediated EGFR-TKI resistance in lung adenocarcinoma: the role of RELB[J]. Oncotarget, 2018, 9(7): 7631-7643. doi: 10.18632/oncotarget.24146
    [21]
    BULE P, AGUIAR S I, AIRES-DA-SILVA F, et al. Chemokine-directed tumor microenvironment modulation in cancer immunotherapy[J]. Int J Mol Sci, 2021, 22(18): 9804. doi: 10.3390/ijms22189804
    [22]
    AHMED S, MOHAMED H T, EL-HUSSEINY N, et al. IL-8 secreted by tumor associated macrophages contribute to lapatinib resistance in HER2-positive locally advanced breast cancer via activation of Src/STAT3/ERK1/2-mediated EGFR signaling[J]. Biochim Biophys Acta Mol Cell Res, 2021, 1868(6): 118995. doi: 10.1016/j.bbamcr.2021.118995
    [23]
    PEI B X, SUN B S, ZHANG Y, et al. Expression of colony-stimulating factor 1 in lung adenocarcinoma and its prognostic implication[J]. Zhonghua Zhong Liu Za Zhi, 2015, 37(2): 113-118.
    [24]
    CEKIC C, DAY Y J, SAG D, et al. Myeloid expression of adenosine A2A receptor suppresses T and NK cell responses in the solid tumor microenvironment[J]. Cancer Res, 2014, 74(24): 7250-7259. doi: 10.1158/0008-5472.CAN-13-3583
    [25]
    SUGIYAMA E, TOGASHI Y, TAKEUCHI Y, et al. Blockade of EGFR improves responsiveness to PD-1 blockade in EGFR-mutated non-small cell lung cancer[J]. Sci Immunol, 2020, 5(43): eaav3937. doi: 10.1126/sciimmunol.aav3937
    [26]
    张奥伦, 殷婷, 张西志. 肿瘤突变负荷对结直肠癌患者免疫治疗疗效的预测价值[J]. 实用临床医药杂志, 2020, 24(8): 128-132. doi: 10.7619/jcmp.202008035
    [27]
    YOH K, MATSUMOTO S, FURUYA N, et al. Comprehensive assessment of PD-L1 expression, tumor mutational burden and oncogenic driver alterations in non-small cell lung cancer patients treated with immune checkpoint inhibitors[J]. Lung Cancer, 2021, 159: 128-134. doi: 10.1016/j.lungcan.2021.07.015
    [28]
    DONG Z Y, ZHANG J T, LIU S Y, et al. EGFR mutation correlates with uninflamed phenotype and weak immunogenicity, causing impaired response to PD-1 blockade in non-small cell lung cancer[J]. Oncoimmunology, 2017, 6(11): e1356145. doi: 10.1080/2162402X.2017.1356145
    [29]
    LI T, PANG X C, WANG J Y, et al. Exploration of the tumor-suppressive immune microenvironment by integrated analysis in EGFR-mutant lung adenocarcinoma[J]. Front Oncol, 2021, 11: 591922. doi: 10.3389/fonc.2021.591922
    [30]
    LI L, LI M Y, WANG X S. Cancer type-dependent correlations between TP53 mutations and antitumor immunity[J]. DNA Repair (Amst), 2020, 88: 102785. doi: 10.1016/j.dnarep.2020.102785
    [31]
    XIE F T, XU M X, LU J, et al. The role of exosomal PD-L1 in tumor progression and immunotherapy[J]. Mol Cancer, 2019, 18(1): 146. doi: 10.1186/s12943-019-1074-3
    [32]
    LEE B S, PARK D I, LEE D H, et al. Hippo effector YAP directly regulates the expression of PD-L1 transcripts in EGFR-TKI-resistant lung adenocarcinoma[J]. Biochem Biophys Res Commun, 2017, 491(2): 493-499. doi: 10.1016/j.bbrc.2017.07.007
    [33]
    D'INCECCO A, ANDREOZZI M, LUDOVINI V, et al. PD-1 and PD-L1 expression in molecularly selected non-small-cell lung cancer patients[J]. Br J Cancer, 2015, 112(1): 95-102. doi: 10.1038/bjc.2014.555
    [34]
    SONG P, WU S F, ZHANG L, et al. Correlation between PD-L1 expression and clinicopathologic features in 404 patients with lung adenocarcinoma[J]. Interdiscip Sci, 2019, 11(2): 258-265. doi: 10.1007/s12539-019-00329-8
    [35]
    PENG S L, WANG R, ZHANG X J, et al. EGFR-TKI resistance promotes immune escape in lung cancer via increased PD-L1 expression[J]. Mol Cancer, 2019, 18(1): 165. doi: 10.1186/s12943-019-1073-4
    [36]
    HSU K H, HUANG Y H, TSENG J S, et al. High PD-L1 expression correlates with primary resistance to EGFR-TKIs in treatment naÏve advanced EGFR-mutant lung adenocarcinoma patients[J]. Lung Cancer, 2019, 127: 37-43. doi: 10.1016/j.lungcan.2018.11.021
    [37]
    GAINOR J F, SHAW A T, SEQUIST L V, et al. EGFR mutations and ALK rearrangements are associated with low response rates to PD-1 pathway blockade in non-small cell lung cancer: a retrospective analysis[J]. Clin Cancer Res, 2016, 22(18): 4585-4593. doi: 10.1158/1078-0432.CCR-15-3101
    [38]
    MAZIERES J, DRILON A, LUSQUE A, et al. Immune checkpoint inhibitors for patients with advanced lung cancer and oncogenic driver alterations: results from the IMMUNOTARGET registry[J]. Ann Oncol, 2019, 30(8): 1321-1328. doi: 10.1093/annonc/mdz167
    [39]
    LEE C K, MAN J, LORD S, et al. Checkpoint inhibitors in metastatic EGFR-mutated non-small cell lung cancer-A meta-analysis[J]. J Thorac Oncol, 2017, 12(2): 403-407. doi: 10.1016/j.jtho.2016.10.007
    [40]
    JIA Y J, LI X F, JIANG T, et al. EGFR-targeted therapy alters the tumor microenvironment in EGFR-driven lung tumors: implications for combination therapies[J]. Int J Cancer, 2019, 145(5): 1432-1444. doi: 10.1002/ijc.32191
    [41]
    YANG J C H, GADGEEL S M, SEQUIST L V, et al. Pembrolizumab in combination with erlotinib or gefitinib as first-line therapy for advanced NSCLC with sensitizing EGFR mutation[J]. J Thorac Oncol, 2019, 14(3): 553-559. doi: 10.1016/j.jtho.2018.11.028
    [42]
    CREELAN B C, YEH T C, KIM S W, et al. A Phase 1 study of gefitinib combined with durvalumab in EGFR TKI-naive patients with EGFR mutation-positive locally advanced/metastatic non-small-cell lung cancer[J]. Br J Cancer, 2021, 124(2): 383-390. doi: 10.1038/s41416-020-01099-7
    [43]
    HELLMANN M D, RIZVI N A, GOLDMAN J W, et al. Nivolumab plus ipilimumab as first-line treatment for advanced non-small-cell lung cancer (CheckMate 012): results of an open-label, phase 1, multicohort study[J]. Lancet Oncol, 2017, 18(1): 31-41. doi: 10.1016/S1470-2045(16)30624-6
    [44]
    JIANG T, WANG P Y, ZHANG J, et al. Toripalimab plus chemotherapy as second-line treatment in previously EGFR-TKI treated patients with EGFR-mutant-advanced NSCLC: a multicenter phase-Ⅱ trial[J]. Signal Transduct Target Ther, 2021, 6(1): 355. doi: 10.1038/s41392-021-00751-9
    [45]
    LIU S T, WU F Y, LI X F, et al. Patients with short PFS to EGFR-TKIs predicted better response to subsequent anti-PD-1/PD-L1 based immunotherapy in EGFR common mutation NSCLC[J]. Front Oncol, 2021, 11: 639947. doi: 10.3389/fonc.2021.639947
    [46]
    NOGAMI N, BARLESI F, SOCINSKI M A, et al. IMpower150 final exploratory analyses for atezolizumab plus bevacizumab and chemotherapy in key NSCLC patient subgroups with EGFR mutations or metastases in the liver or brain[J]. J Thorac Oncol, 2022, 17(2): 309-323. doi: 10.1016/j.jtho.2021.09.014
    [47]
    PARK K, VANSTEENKISTE J, LEE K H, et al. Pan-Asian adapted ESMO Clinical Practice Guidelines for the management of patients with locally-advanced unresectable non-small-cell lung cancer: a KSMO-ESMO initiative endorsed by CSCO, ISMPO, JSMO, MOS, SSO and TOS[J]. Ann Oncol, 2020, 31(2): 191-201. doi: 10.1016/j.annonc.2019.10.026
    [48]
    CHENG L, CREASY T, PILATAXI F, et al. Effects of combination treatment with durvalumab plus tremelimumab on the tumor microenvironment in non-small-cell lung carcinoma[J]. Cancer Immunology, Immunotherapy, 2021: 1-15.
    [49]
    CUMMINGS A L, SANTOSO K M, GOLDMAN J W. KEYNOTE-021 cohorts D and H suggest modest benefit in combining ipilimumab with pembrolizumab in second-line or later advanced non-small cell lung cancer treatment[J]. Transl Lung Cancer Res, 2019, 8(5): 706-709. doi: 10.21037/tlcr.2019.08.11
    [50]
    BORGHAEI H, GETTINGER S, VOKES E E, et al. Five-Year Outcomes From the Randomized, Phase Ⅲ Trials CheckMate 017 and 057: Nivolumab Versus Docetaxel in Previously Treated Non-Small-Cell Lung Cancer[J]. Journal of Clinical Oncology, 2021, 39(7): 723-733. doi: 10.1200/JCO.20.01605
  • Cited by

    Periodical cited type(3)

    1. 何张楷,章铁琦. LCP联合同种异体骨治疗复杂胫骨平台骨折的疗效及对膝关节功能等的影响. 浙江创伤外科. 2024(10): 1847-1849 .
    2. 杜习起,张珂,苏威. 关节镜下内固定治疗复杂胫骨平台骨折的疗效观察. 哈尔滨医药. 2023(03): 18-20 .
    3. 唐茁栋,李亭燕,李林涛,钟凤林,刘绍江. 氨甲环酸在复杂胫骨平台骨折围手术期中的疗效观察. 中国卫生标准管理. 2023(13): 138-143 .

    Other cited types(0)

Catalog

    Article views (336) PDF downloads (21) Cited by(3)

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return