TAN Jiali, FENG Hui, DUAN Yang, XIE Lixiang, SONG Miao, XU Wu, WANG Zhirong. Effect of coronary CT angiography in evaluation of in-stent restenosis based on intravascular ultrasound[J]. Journal of Clinical Medicine in Practice, 2022, 26(10): 15-19, 25. DOI: 10.7619/jcmp.20214831
Citation: TAN Jiali, FENG Hui, DUAN Yang, XIE Lixiang, SONG Miao, XU Wu, WANG Zhirong. Effect of coronary CT angiography in evaluation of in-stent restenosis based on intravascular ultrasound[J]. Journal of Clinical Medicine in Practice, 2022, 26(10): 15-19, 25. DOI: 10.7619/jcmp.20214831

Effect of coronary CT angiography in evaluation of in-stent restenosis based on intravascular ultrasound

More Information
  • Received Date: December 06, 2021
  • Available Online: May 24, 2022
  • Objective 

    To explore the accuracy of coronary CT angiography (CCTA) in evaluation of postoperative in-stent restenosis (ISR) after percutaneous coronary intervention (PCI) taking intravascular ultrasound (IVUS) as golden criteria.

    Methods 

    The basic information and imaging data of 60 patients (80 target vessels with intravascular stents) with coronary stent implantation who underwent CCTA and IVUS within 4 weeks in the same period were retrospectively collected.According to the diameter of stents, target vessels were divided into group A (stent diameter>3.0 mm) and group B (stent diameter≤ 3.0 mm).Group A and group B were further divided into group A1 and group B1(internal stent lesion), and group A2 and group B2(edge lesion) according to the lesion segment (inside stent or within 5 mm of stent edge).Group 1 included group A1 and group B1, and group 2 included group A2 and group B2.The IVUS results were taken as "gold standard" to evaluate the results of CCTA in quantitative detection of in-stent lesions and its accuracy in diagnosing in-stent lesions with different inner diameters and in different ISR segments.

    Results 

    The quantitative results of CCTA in in-stent lesions (minimum lumen diameter, mean vessel diameter, minimum lumen area, plaque area, plaque length, external elastic membrane area, plaque load and plaque volume) had significant positive correlations with the quantitative results of IVUS (P < 0.001).The specificity (92.86%), sensitivity (92.59%) and accuracy (92.68%) of ISR by CCTA in group A (n=41) were higher, and were consistent with the results of IVUS (Kappa=0.840, P < 0.001).The specificity (88.24%), sensitivity (86.36%) and accuracy (87.18%) of ISR by CCTA in the group B were lower than those of the group A, which had moderate consistence with the results of IVUS (Kappa=0.741, P < 0.001).There was no significant difference in the diagnosis of identifying ISR between group A and B (P=0.523), between group 1 and group 2(P=0.212) and between group A2 and group B2(P=0.484).However, there was significant difference in the diagnosis of identifying ISR between group A1 and B1 by CCTA (P=0.011).

    Conclusion 

    CCTA has good accuracy in quantitative detection of ISR, and has higher reliability in identification of ISR in in-stent with diameter >3.0 mm and at the edge of stents with different inner diameters, but the diagnosis of internal stent ISR with diameter ≤3.0 mm is inaccurate.

  • [1]
    AOKI J, TANABE K. Mechanisms of drug-eluting stent restenosis[J]. Cardiovasc Interv Ther, 2021, 36(1): 23-29. doi: 10.1007/s12928-020-00734-7
    [2]
    NAKAMURA D, DOHI T, ISHIHARA T, et al. Predictors and outcomes of neoatherosclerosis in patients with in-stent restenosis[J]. EuroIntervention, 2021, 17(6): 489-496. doi: 10.4244/EIJ-D-20-00539
    [3]
    ANDREINI D, PONTONE G, MUSHTAQ S, et al. Diagnostic accuracy of coronary CT angiography performed in 100 consecutive patients with coronary stents using a whole-organ high-definition CT scanner[J]. Int J Cardiol, 2019, 274: 382-387. doi: 10.1016/j.ijcard.2018.09.010
    [4]
    ECKERT J, RENCZES-JANETZKO P, SCHMIDT M, et al. Coronary CT angiography (CCTA) using third-generation dual-source CT for ruling out in-stent restenosis[J]. Clin Res Cardiol, 2019, 108(4): 402-410. doi: 10.1007/s00392-018-1369-1
    [5]
    MUNNUR R K, ANDREWS J, KATAOKA Y, et al. Quantitative and qualitative coronary plaque assessment using computed tomography coronary angiography: a comparison with intravascular ultrasound[J]. Heart Lung Circ, 2020, 29(6): 883-893. doi: 10.1016/j.hlc.2019.06.719
    [6]
    CONTE E, MUSHTAQ S, PONTONE G, et al. Plaque quantification by coronary computed tomography angiography using intravascular ultrasound as a reference standard: a comparison between standard and last generation computed tomography scanners[J]. Eur Heart J Cardiovasc Imaging, 2020, 21(2): 191-201.
    [7]
    EIJSVOOGEL N G, HENDRIKS B M F, NELEMANS P, et al. Personalization of CM injection protocols in coronary computed tomographic angiography (people CT trial)[J]. Contrast Media Mol Imaging, 2020, 2020: 5407936.
    [8]
    YUAN M Y, WU H, LI R X, et al. The value of quantified plaque analysis by dual-source coronary CT angiography to detect vulnerable plaques: a comparison study with intravascular ultrasound[J]. Quant Imaging Med Surg, 2020, 10(3): 668-677. doi: 10.21037/qims.2020.01.13
    [9]
    OBAID D R, CALVERT P A, BROWN A, et al. Coronary CT angiography features of ruptured and high-risk atherosclerotic plaques: correlation with intra-vascular ultrasound[J]. J Cardiovasc Comput Tomogr, 2017, 11(6): 455-461. doi: 10.1016/j.jcct.2017.09.001
    [10]
    KESARWANI M, NAKANISHI R, CHOI T Y, et al. Evaluation of plaque morphology by 64-slice coronary computed tomographic angiography compared to intravascular ultrasound in nonocclusive segments of coronary arteries[J]. Acad Radiol, 2017, 24(8): 968-974. doi: 10.1016/j.acra.2017.03.001
    [11]
    GARCIA-GARCIA H M, COSTA M A, SERRUYS P W. Imaging of coronary atherosclerosis: intravascular ultrasound[J]. Eur Heart J, 2010, 31(20): 2456-2469. doi: 10.1093/eurheartj/ehq280
    [12]
    CISMARU G, SERBAN T, TIRPE A. Ultrasound methods in the evaluation of atherosclerosis: from pathophysiology to clinic[J]. Biomedicines, 2021, 9(4): 418. doi: 10.3390/biomedicines9040418
    [13]
    NOGOURANI M K, MORADI M, KHAJOUEI A S, et al. Diagnostic value of intraluminal stent enhancement in estimating coronary in-stent restenosis[J]. J Clin Imaging Sci, 2020, 10: 12. doi: 10.25259/JCIS_153_2019
    [14]
    MALAIAPAN Y, LEUNG M, WHITE A J. The role of intravascular ultrasound in percutaneous coronary intervention of complex coronary lesions[J]. Cardiovasc Diagn Ther, 2020, 10(5): 1371-1388. doi: 10.21037/cdt-20-189
    [15]
    DAI T, WANG J R, HU P F. Diagnostic performance of computed tomography angiography in the detection of coronary artery in-stent restenosis: evidence from an updated meta-analysis[J]. Eur Radiol, 2018, 28(4): 1373-1382. doi: 10.1007/s00330-017-5097-0
    [16]
    LI Y H, YU M M, LI W B, et al. Third generation dual-source CT enables accurate diagnosis of coronary restenosis in all size stents with low radiation dose and preserved image quality[J]. Eur Radiol, 2018, 28(6): 2647-2654. doi: 10.1007/s00330-017-5256-3
    [17]
    NEUMANN F J, SOUSA-UVA M, AHLSSON A, et al. 2018 ESC/EACTS guidelines on myocardial revascularization[J]. Eur Heart J, 2019, 40(2): 87-165. doi: 10.1093/eurheartj/ehy394
    [18]
    NEUMANN F J, SOUSA-UVA M. "ten commandments" for the 2018 ESC/EACTS guidelines on myocardial revascularization[J]. Eur Heart J, 2018, 39(42): 3759. doi: 10.1093/eurheartj/ehy658
    [19]
    EVORA P R B, ALBUQUERQUE A A S. The 2018 ESC/EACTS guidelines on myocardial revascularization still does not address the issue of disease-free saphenous vein grafts at the time of redo coronary artery bypass grafting[J]. Eur J Cardiothorac Surg, 2020, 57(1): 199-200. doi: 10.1093/ejcts/ezz009
    [20]
    AMANUMA M, KONDO T, SANO T, et al. Assessment of coronary in-stent restenosis: value of subtraction coronary computed tomography angiography[J]. Int J Cardiovasc Imaging, 2016, 32(4): 661-670. doi: 10.1007/s10554-015-0826-4
    [21]
    LI J, GUO M T, YANG X, et al. The usefulness of subtraction coronary computed tomography angiography for in-stent restenosis assessment of patients with CoCr stent using 320-row area detector CT[J]. Medicine, 2021, 100(51): e28345. doi: 10.1097/MD.0000000000028345
    [22]
    戴爱明, 杨中芳, 张守梅, 等. 冠状动脉造影及支架植入术患者的护理安全管理[J]. 实用临床医药杂志, 2019, 23(23): 40-42. doi: 10.7619/jcmp.201923012
  • Cited by

    Periodical cited type(18)

    1. 马肖寒,周凤丽,周莉. 呼吸机管路低位摆放预防行机械通气患者呼吸机相关性肺炎的效果观察. 山东医学高等专科学校学报. 2025(01): 96-98 .
    2. 李晓,胡加运,秦梦. 革兰阴性杆菌感染呼吸机相关性肺炎患者病原菌分布及耐药性. 中国民康医学. 2024(05): 16-18 .
    3. 黄小芬,夏良娥,赵世元,黄敏敏. 建立梯度提升机模型预测RICU机械通气并发呼吸机相关性肺炎患者的短期预后. 广西医学. 2024(01): 78-83 .
    4. 郑丽欢. 某院ICU呼吸机相关性肺炎患者呼吸道标本中病原菌的检出情况和耐药性分析. 抗感染药学. 2024(02): 177-180 .
    5. 徐海蓉,陆恺,陈林祥. 有创-无创序贯机械通气治疗重症肺炎合并呼吸衰竭的效果观察. 大医生. 2024(07): 96-98 .
    6. 钟晓莉,余林,邓海波,张帆,罗洲. 236例ICU呼吸机相关性肺炎患者病原菌分布及耐药性分析. 中国病原生物学杂志. 2024(07): 838-841 .
    7. 邹君俊. 一种免倾倒呼吸机集水杯的设计与使用. 科技与创新. 2024(13): 57-58+64 .
    8. 张先梅,文艳,哈海霞,罗永丽,张艳. 重症肺炎患儿呼吸机相关性肺炎发生风险列线图模型构建. 临床医学研究与实践. 2024(27): 9-13 .
    9. 陈妙莉,黄腊梅,赵红苑. 基于循证理念主导的早期康复活动在ICU机械通气患者中的应用效果. 现代养生. 2024(20): 1584-1588 .
    10. 伏帅. 慢阻肺合并呼吸衰竭机械通气患者发生呼吸机相关性肺炎的危险因素分析. 黑龙江医药科学. 2024(06): 149-151 .
    11. 吴小杰,郜永月. 呼吸机相关性肺炎的影响因素及护理预防策略. 现代养生. 2024(22): 1750-1753 .
    12. 张楠,李红双,兰迎春. 基于网式控制模式的吸痰方案优化对重症机械通气患者VAP的预防效果研究. 齐鲁护理杂志. 2024(21): 129-131 .
    13. 王一山,阮萍,章夏萍. 基于渥太华研究应用模式的肺部感染预防方案在ICU机械通气病人中的应用. 循证护理. 2024(24): 4543-4547 .
    14. 丁剑,周俊. 慢性阻塞性肺疾病合并肺炎患者的痰培养菌种分布及耐药性分析. 实用临床医药杂志. 2023(01): 60-63+67 . 本站查看
    15. 王彦芬,朱萍莲,刘玉芳,凌碧珍,王航莉,郑丽华. 重症监护室患者呼吸机相关性肺炎的影响因素分析及预防性应对措施探讨. 中西医结合护理(中英文). 2023(02): 145-147 .
    16. 周红,李志红,徐丽红. 分级肺康复护理对ICU机械通气病人的应用效果. 全科护理. 2023(34): 4842-4845 .
    17. 王进,李玉侠. ICU老年机械通气患者呼吸机相关性肺炎风险预测模型的构建探讨. 中国实用医药. 2023(23): 52-56 .
    18. 荆惠,关胜男,谢凯,王海峰. 纤维支气管镜肺泡灌洗辅助治疗重症呼吸机相关性肺炎的Meta分析. 实用临床医药杂志. 2022(21): 1-7+13 . 本站查看

    Other cited types(3)

Catalog

    Article views (187) PDF downloads (15) Cited by(21)

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return