YANG Yongqi, LI Hongliang, LIANG Jingyan. Research progress of nano biomimetic technology in atherosclerosis[J]. Journal of Clinical Medicine in Practice, 2022, 26(10): 130-134. DOI: 10.7619/jcmp.20215032
Citation: YANG Yongqi, LI Hongliang, LIANG Jingyan. Research progress of nano biomimetic technology in atherosclerosis[J]. Journal of Clinical Medicine in Practice, 2022, 26(10): 130-134. DOI: 10.7619/jcmp.20215032

Research progress of nano biomimetic technology in atherosclerosis

More Information
  • Received Date: December 21, 2021
  • Available Online: May 24, 2022
  • Atherosclerosis (AS) is a chronic inflammatory vascular disease, which is the common pathological basis of coronary heart disease, stroke and peripheral vascular diseases. Nanotechnology has broad application prospects in the diagnosis and treatment of AS, but ordinary nanoparticle is easy to be recognized and eliminated by the body as foreign bodies, and is difficult to be targeted and delivered to the lesion. Nano biomimetic technology can not only avoid the immune clearance of the body, but also improve the efficacy and biocompatibility. This paper reviewed the research progress, limitations and prospects of nano biomimetic technology in AS, so as to provide new ideas for the prevention, diagnosis and treatment of AS.

  • [1]
    中国心血管健康与疾病报告编写组. 中国心血管健康与疾病报告2019概要[J]. 心脑血管病防治, 2020, 20(5): 437-450. doi: 10.3969/j.issn.1009-816x.2020.05.001
    [2]
    CHEN J, ZHANG X X, MILLICAN R, et al. Recent advances in nanomaterials for therapy and diagnosis for atherosclerosis[J]. Adv Drug Deliv Rev, 2021, 170: 142-199. doi: 10.1016/j.addr.2021.01.005
    [3]
    RODRÍGUEZ-ARCO L, POMA A, RUIZ-PÉREZ L, et al. Molecular bionics-engineering biomaterials at the molecular level using biological principles[J]. Biomaterials, 2019, 192: 26-50. doi: 10.1016/j.biomaterials.2018.10.044
    [4]
    VIJAYAN V, UTHAMAN S, PARK I K. Cell membrane coated nanoparticles: an emerging biomimetic nanoplatform for targeted bioimaging and therapy[M]//Advances in Experimental Medicine and Biology. Singapore: Springer Singapore, 2018: 45-59.
    [5]
    DEHAINI D, WEI X L, FANG R H, et al. Erythrocyte-platelet hybrid membrane coating for enhanced nanoparticle functionalization[J]. Adv Mater, 2017, 29(16):10.1002/adma.201606209 .
    [6]
    WANG Y, ZHANG K, QIN X, et al. Biomimetic nanotherapies: red blood cell based core-shell structured nano complexes for atherosclerosis management[J]. Adv Sci, 2019, 6(12): 1900172. doi: 10.1002/advs.201900172
    [7]
    钟元. 多功能集成化纳米红细胞囊膜用于治疗动脉粥样硬化的研究[D]. 重庆: 重庆大学, 2019.
    [8]
    WU G H, WEI W, ZHANG J F, et al. A self-driven bioinspired nanovehicle by leukocyte membrane-hitchhiking for early detection and treatment of atherosclerosis[J]. Biomaterials, 2020, 250: 119963. doi: 10.1016/j.biomaterials.2020.119963
    [9]
    ZHANG C, LING C L, PANG L, et al. Direct macromolecular drug delivery to cerebral ischemia area using neutrophil-mediated nanoparticles[J]. Theranostics, 2017, 7(13): 3260-3275. doi: 10.7150/thno.19979
    [10]
    WANG Y, ZHANG K, LI T H, et al. Macrophage membrane functionalized biomimetic nanoparticles for targeted anti-atherosclerosis applications[J]. Theranostics, 2021, 11(1): 164-180. doi: 10.7150/thno.47841
    [11]
    GAO C, HUANG Q X, LIU C H, et al. Treatment of atherosclerosis by macrophage-biomimetic nanoparticles via targeted pharmacotherapy and sequestration of proinflammatory cytokines[J]. Nat Commun, 2020, 11(1): 2622. doi: 10.1038/s41467-020-16439-7
    [12]
    李琦玉, 张宁, 陈婧, 等. 血小板及其膜仿生学在动脉粥样硬化中的应用进展[J]. 中国临床医学, 2019, 26(4): 631-634. https://www.cnki.com.cn/Article/CJFDTOTAL-LCYX201904026.htm
    [13]
    WEI X L, YING M, DEHAINI D, et al. Nanoparticle functionalization with platelet membrane enables multifactored biological targeting and detection of atherosclerosis[J]. ACS Nano, 2018, 12(1): 109-116. doi: 10.1021/acsnano.7b07720
    [14]
    TANG J N, SHEN D L, CARANASOS T G, et al. Therapeutic microparticles functionalized with biomimetic cardiac stem cell membranes and secretome[J]. Nat Commun, 2017, 8: 13724. doi: 10.1038/ncomms13724
    [15]
    CHUNG J W, CHANG W H, BANG O Y, et al. Efficacy and safety of intravenous mesenchymal stem cells for ischemic stroke[J]. Neurology, 2021, 96(7): e1012-e1023. doi: 10.1212/WNL.0000000000011440
    [16]
    TIAN T, ZHANG H X, HE C P, et al. Surface functionalized exosomes as targeted drug delivery vehicles for cerebral ischemia therapy[J]. Biomaterials, 2018, 150: 137-149. doi: 10.1016/j.biomaterials.2017.10.012
    [17]
    LI Y J, WU J Y, LIU J H, et al. Artificial exosomes for translational nanomedicine[J]. J Nanobiotechnology, 2021, 19(1): 242. doi: 10.1186/s12951-021-00986-2
    [18]
    WU G H, ZHANG J F, ZHAO Q R, et al. Molecularly engineered macrophage-derived exosomes with inflammation tropism and intrinsic heme biosynthesis for atherosclerosis treatment[J]. Angew Chem Int Ed Engl, 2020, 59(10): 4068-4074. doi: 10.1002/anie.201913700
    [19]
    RADER D J, HOVINGH G K. HDL and cardiovascular disease[J]. Lancet, 2014, 384(9943): 618-625. doi: 10.1016/S0140-6736(14)61217-4
    [20]
    王青, 杨觅. 载紫杉醇重组高密度脂蛋白微球的制备和抗胃癌作用研究[J]. 浙江医学, 2020, 42(2): 118-122, 126, 203. https://www.cnki.com.cn/Article/CJFDTOTAL-ZJYE202002008.htm
    [21]
    KJELDSEN E W, THOMASSEN J Q, FRIKKE-SCHMIDT R. HDL cholesterol concentrations and risk of atherosclerotic cardiovascular disease-Insights from randomized clinical trials and human genetics[J]. Biochim Biophys Acta Mol Cell Biol Lipids, 2022, 1867(1): 159063.
    [22]
    ROSALES C, GILLARD B K, XU B Q, et al. Revisiting reverse cholesterol transport in the context of high-density lipoprotein free cholesterol bioavailability[J]. Methodist Debakey Cardiovasc J, 2019, 15(1): 47-54. doi: 10.14797/mdcj-15-1-47
    [23]
    CHATTOPADHYAY A, NAVAB M, HOUGH G, et al. A novel approach to oral ApoA-I mimetic therapy[J]. J Lipid Res, 2013, 54(4): 995-1010. doi: 10.1194/jlr.M033555
    [24]
    REDDY S T, NAVAB M, ANANTHARAMAIAH G M, et al. Apolipoprotein A-I mimetics[J]. Curr Opin Lipidol, 2014, 25(4): 304-308. doi: 10.1097/MOL.0000000000000092
    [25]
    DUIVENVOORDEN R, TANG J, CORMODE D P, et al. A statin-loaded reconstituted high-density lipoprotein nanoparticle inhibits atherosclerotic plaque inflammation[J]. Nat Commun, 2014, 5: 3065. doi: 10.1038/ncomms4065
    [26]
    ARQUES S. Human serum albumin in cardiovascular diseases[J]. Eur J Intern Med, 2018, 52: 8-12. doi: 10.1016/j.ejim.2018.04.014
    [27]
    李祥. 白蛋白自组装纳米探针用于动脉粥样硬化易损斑块的精准诊疗[D]. 济南: 山东师范大学, 2019.
    [28]
    AVCI-ADALI M, PAUL A, ZIEMER G, et al. New strategies for in vivo tissue engineering by mimicry of homing factors for self-endothelialisation of blood contacting materials[J]. Biomaterials, 2008, 29(29): 3936-3945. doi: 10.1016/j.biomaterials.2008.07.002
    [29]
    LIU K, WANG N, WANG W S, et al. A bio-inspired high strength three-layer nanofiber vascular graft with structure guided cell growth[J]. J Mater Chem B, 2017, 5(20): 3758-3764. doi: 10.1039/C7TB00465F
    [30]
    CHENG S, JIN Y, WANG N, et al. Self-adjusting, polymeric multilayered roll that can keep the shapes of the blood vessel scaffolds during biodegradation[J]. Adv Mater, 2017, 29(28): 1-8.
    [31]
    KHAN I S, KELLY P D, SINGER R J. Prototyping of cerebral vasculature physical models[J]. Surg Neurol Int, 2014, 5: 11. doi: 10.4103/2152-7806.125858
    [32]
    NAMBA K, HIGAKI A, KANEKO N, et al. Microcatheter shaping for intracranial aneurysm coiling using the 3-dimensional printing rapid prototyping technology: preliminary result in the first 10 consecutive cases[J]. World Neurosurg, 2015, 84(1): 178-186. doi: 10.1016/j.wneu.2015.03.006
    [33]
    ZHU W, QU X, ZHU J, et al. Direct 3D bioprinting of prevascularized tissue constructs with complex microarchitecture[J]. Biomaterials, 2017, 124: 106-115. doi: 10.1016/j.biomaterials.2017.01.042
    [34]
    NGUYEN K T, GO G, JIN Z, et al. A magnetically guided self-rolled microrobot for targeted drug delivery, real-time X-ray imaging, and microrobot retrieval[J]. Adv Healthc Mater, 2021, 10(6): e2001681. doi: 10.1002/adhm.202001681
    [35]
    WU Z Y, WU R, LI X Y, et al. Multi-pathway microenvironment regulation for atherosclerosis therapy based on beta-cyclodextrin/L-arginine/Au nanomotors with dual-mode propulsion[J]. Small, 2022, 18(9): e2104120. doi: 10.1002/smll.202104120
    [36]
    朱团, 金爽, 张利超. 纳米机器人及其发展研究[J]. 中国市场, 2016(32): 68-69. https://www.cnki.com.cn/Article/CJFDTOTAL-SCZG201632029.htm
  • Cited by

    Periodical cited type(5)

    1. 刘晓晓,刘仲伟,朱海涛,李汶静,吕光伟,薛继红. 西安地区儿童尿路感染的临床特点及病原菌分析. 检验医学与临床. 2023(16): 2305-2308+2315 .
    2. 骆媚芬,郑蓉婷,李娟,陆妹. 泌尿道感染患儿陪护疾病不确定感与社会支持的现状调查及相关性研究. 中国卫生标准管理. 2023(16): 10-14 .
    3. 涂建平,梁福律,林剑峰,胡力仁,叶振阳,范先明,郭昭建. 老年患者泌尿道感染再发情况及危险因素分析. 中国卫生标准管理. 2022(01): 82-86 .
    4. 张卓,万滨,马丽思,张文圣. 某院240例急性尿路感染患者尿标本中病原菌的分布与耐药性分析. 抗感染药学. 2022(05): 695-697 .
    5. 李玲. 某院急性尿路感染患者尿标本中病原菌的分布与耐药性分析. 抗感染药学. 2022(06): 870-872 .

    Other cited types(0)

Catalog

    Article views (278) PDF downloads (46) Cited by(5)

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return