Citation: | HOU Dandan, LI Yaxin, WU Huimin, HE Jirui. Research progress of point in range and other blood glucose management indicators in type 2 diabetic nephropathy[J]. Journal of Clinical Medicine in Practice, 2022, 26(13): 145-148. DOI: 10.7619/jcmp.20215103 |
Compared with diabetic patients without microvascular complications, patients with diabetic nephropathy usually have a longer course of disease, larger fluctuations in blood glucose, and are more likely to have multiple adverse outcomes. Continuous glucose monitoring (CGM) systems have not been routinely used in clinical practice, thus self-monitoring of blood glucose (SMBG) is still an important tool for monitoring blood glucose and guiding treatment. SMBG provides point blood glucose, not a continuous trend over time, so point in range (PIR) provides less data than time in target range (TIR). However, some studies have found that PIR is an effective marker of blood sugar control, which is comparable to TIR assessed by CGM, and can be used as an effective indicator for evaluating blood sugar fluctuations. This article reviewed the application of PIR instead of TIR as a new blood glucose monitoring index in type 2 diabetic nephropathy.
[1] |
ALICIC R Z, ROONEY M T, TUTTLE K R. Diabetic kidney disease: challenges, progress, and possibilities[J]. Clin J Am Soc Nephrol, 2017, 12(12): 2032-2045. doi: 10.2215/CJN.11491116
|
[2] |
RAWSHANI A, RAWSHANI A, FRANZÉN S, et al. Risk factors, mortality, and cardiovascular outcomes in patients with type 2 diabetes[J]. N Engl J Med, 2018, 379(7): 633-644. doi: 10.1056/NEJMoa1800256
|
[3] |
ZHANG L X, LONG J Y, JIANG W S, et al. Trends in chronic kidney disease in China[J]. N Engl J Med, 2016, 375(9): 905-906. doi: 10.1056/NEJMc1602469
|
[4] |
LUK A O, LI X, ZHANG Y, et al. Quality of care in patients with diabetic kidney disease in Asia: the Joint Asia Diabetes Evaluation (JADE) Registry[J]. Diabet Med, 2016, 33(9): 1230-1239. doi: 10.1111/dme.13014
|
[5] |
BATTELINO T, DANNE T, BERGENSTAL R M, et al. Clinical targets for continuous glucose monitoring data interpretation: recommendations from the international consensus on time in range[J]. Diabetes Care, 2019, 42(8): 1593-1603. doi: 10.2337/dci19-0028
|
[6] |
MARTINEZ M, SANTAMARINA J, PAVESI A, et al. Glycemic variability and cardiovascular disease in patients with type 2 diabetes[J]. BMJ Open Diabetes Res Care, 2021, 9(1): e002032. doi: 10.1136/bmjdrc-2020-002032
|
[7] |
CUTRUZZOLÀ A, IRACE C, PARISE M, et al. Time spent in target range assessed by self-monitoring blood glucose associates with glycated hemoglobin in insulin treated patients with diabetes[J]. Nutr Metab Cardiovasc Dis, 2020, 30(10): 1800-1805. doi: 10.1016/j.numecd.2020.06.009
|
[8] |
陆静毅, 戴冬君, 周健. 糖尿病管理新指标: 葡萄糖在目标范围内时间的研究现状及展望[J]. 中华医学杂志, 2020, 100(38): 2961-2965. doi: 10.3760/cma.j.cn112137-20200714-02111
|
[9] |
BECK R W, BERGENSTAL R M, RIDDLESWORTH T D, et al. Validation of time in range as an outcome measure for diabetes clinical trials[J]. Diabetes Care, 2019, 42(3): 400-405. doi: 10.2337/dc18-1444
|
[10] |
张东辉, 顾楠, 李昂, 等. 自我血糖监测在评价2型糖尿病患者葡萄糖在目标范围内时间的准确性研究[J]. 中国糖尿病杂志, 2021, 29(2): 95-98. doi: 10.3969/j.issn.1006-6187.2021.02.004
|
[11] |
THE DIABETES RESEARCH IN CHILDREN NETWORK (DIRECNET) STUDY GROUP. Eight-point glucose testing versus the continuous glucose monitoring system in evaluation of glycemic control in type 1 diabetes[J]. J Clin Endocrinol Metab, 2005, 90(6): 3387-3391. doi: 10.1210/jc.2004-2510
|
[12] |
孙迎春, 解汝娟. 糖尿病肾病发病机制的研究进展[J]. 医学综述, 2017, 23(16): 3286-3290. doi: 10.3969/j.issn.1006-2084.2017.16.035
|
[13] |
RHEE S Y, KIM Y S. The role of advanced glycation end products in diabetic vascular complications[J]. Diabetes Metab J, 2018, 42(3): 188-195. doi: 10.4093/dmj.2017.0105
|
[14] |
赵龙, 关广聚. 糖尿病肾病发病机制研究进展[J]. 中华肾脏病杂志, 2013, 29(7): 554-558. doi: 10.3760/cma.j.issn.1001-7097.2013.07.019
|
[15] |
YEOH E, LIM B K, FUN S, et al. Efficacy of self-monitoring of blood glucose versus retrospective continuous glucose monitoring in improving glycaemic control in diabetic kidney disease patients[J]. Nephrology (Carlton), 2018, 23(3): 264-268. doi: 10.1111/nep.12978
|
[16] |
YOO J H, CHOI M S, AHN J, et al. Association between continuous glucose monitoring-derived time in range, other core metrics, and albuminuria in type 2 diabetes[J]. Diabetes Technol Ther, 2020, 22(10): 768-776. doi: 10.1089/dia.2019.0499
|
[17] |
LU J Y, MA X J, ZHOU J, et al. Association of time in range, as assessed by continuous glucose monitoring, with diabetic retinopathy in type 2 diabetes[J]. Diabetes Care, 2018, 41(11): 2370-2376. doi: 10.2337/dc18-1131
|
[18] |
KIDNEY DISEASE: IMPROVING GLOBAL OUTCOMES (KDIGO) DIABETES WORK GROUP. KDIGO 2020 clinical practice guideline for diabetes management in chronic kidney disease[J]. Kidney Int, 2020, 98(4S): S1-S115.
|
[19] |
SUGAWARA A, KAWAI K, MOTOHASHI S, et al. HbA1c variability and the development of microalbuminuria in type 2 diabetes: Tsukuba Kawai Diabetes Registry 2[J]. Diabetologia, 2012, 55(8): 2128-2131. doi: 10.1007/s00125-012-2572-7
|
[20] |
HSU C C, CHANG H Y, HUANG M C, et al. HbA1c variability is associated with microalbuminuria development in type 2 diabetes: a 7-year prospective cohort study[J]. Diabetologia, 2012, 55(12): 3163-3172. doi: 10.1007/s00125-012-2700-4
|
[21] |
GORST C, KWOK C S, ASLAM S, et al. Long-term glycemic variability and risk of adverse outcomes: a systematic review and meta-analysis[J]. Diabetes Care, 2015, 38(12): 2354-2369. doi: 10.2337/dc15-1188
|
[22] |
VIRK S A, DONAGHUE K C, CHO Y H, et al. Association between HbA1c variability and risk of microvascular complications in adolescents with type 1 diabetes[J]. J Clin Endocrinol Metab, 2016, 101(9): 3257-3263. doi: 10.1210/jc.2015-3604
|
[23] |
INABA M, OKUNO S, KUMEDA Y, et al. Glycated albumin is a better glycemic indicator than glycated hemoglobin values in hemodialysis patients with diabetes: effect of Anemia and erythropoietin injection[J]. J Am Soc Nephrol, 2007, 18(3): 896-903. doi: 10.1681/ASN.2006070772
|
[24] |
JIMÉNEZ-CORTEGANA C, IGLESIAS P, RIBALTA J, et al. Nutrients and dietary approaches in patients with type 2 diabetes mellitus and cardiovascular disease: a narrative review[J]. Nutrients, 2021, 13(11): 4150. doi: 10.3390/nu13114150
|
[25] |
ŠOUPAL J, ŠKRHA J Jr, FAJMON M, et al. Glycemic variability is higher in type 1 diabetes patients with microvascular complications irrespective of glycemic control[J]. Diabetes Technol Ther, 2014, 16(4): 198-203. doi: 10.1089/dia.2013.0205
|
[26] |
白倩, 陈琰, 代闪, 等. 2型糖尿病患者血糖波动指标与MAU的相关性[J]. 临床与病理杂志, 2019, 39(8): 1698-1704. https://www.cnki.com.cn/Article/CJFDTOTAL-WYSB201908016.htm
|
[27] |
JIN S M, KIM T H, OH S, et al. Association between the extent of urinary albumin excretion and glycaemic variability indices measured by continuous glucose monitoring[J]. Diabet Med, 2015, 32(2): 274-279. doi: 10.1111/dme.12607
|
[28] |
CERIELLO A, MONNIER L, OWENS D. Glycaemic variability in diabetes: clinical and therapeutic implications[J]. Lancet Diabetes Endocrinol, 2019, 7(3): 221-230. doi: 10.1016/S2213-8587(18)30136-0
|
[29] |
SUBRAMANIAN S, HIRSCH I B. Diabetic kidney disease: is there a role for glycemic variability[J]. Curr Diab Rep, 2018, 18(3): 13. doi: 10.1007/s11892-018-0979-3
|
[30] |
YASUDA H, IWATA Y, NAKAJIMA S, et al. Erythropoietin signal protected human umbilical vein endothelial cells from high glucose-induced injury[J]. Nephrology (Carlton), 2019, 24(7): 767-774. doi: 10.1111/nep.13518
|
[31] |
HANEDA M, NODA M, ORIGASA H, et al. Japanese clinical practice guideline for diabetes 2016[J]. J Diabetes Investig, 2018, 9(3): 657-697. doi: 10.1111/jdi.12810
|
[32] |
ASSOCIATION A D. 6. glycemic targets: standards of medical care in diabetes-2020[J]. Diabetes Care, 2020, 43(Suppl 1): S66-S76.
|
[33] |
LOW S K M, SUM C F, YEOH L Y, et al. Prevalence of chronic kidney disease in adults with type 2 diabetes mellitus[J]. Ann Acad Med Singap, 2015, 44(5): 164-171.
|
[34] |
ZOUNGAS S, ARIMA H, GERSTEIN H C, et al. Effects of intensive glucose control on microvascular outcomes in patients with type 2 diabetes: a meta-analysis of individual participant data from randomised controlled trials[J]. Lancet Diabetes Endocrinol, 2017, 5(6): 431-437. doi: 10.1016/S2213-8587(17)30104-3
|
[35] |
GROUP D R, DE BOER I H, SUN W J, et al. Intensive diabetes therapy and glomerular filtration rate in type 1 diabetes[J]. N Engl J Med, 2011, 365(25): 2366-2376. doi: 10.1056/NEJMoa1111732
|
[36] |
PERKOVIC V, HEERSPINK H L, CHALMERS J, et al. Intensive glucose control improves kidney outcomes in patients with type 2 diabetes[J]. Kidney Int, 2013, 83(3): 517-523. doi: 10.1038/ki.2012.401
|
[37] |
IRACE C, SCHWEITZER M A, TRIPOLINO C, et al. Diabetes data management system to improve glycemic control in people with type 1 diabetes: prospective cohort study[J]. JMIR Mhealth Uhealth, 2017, 5(11): e170. doi: 10.2196/mhealth.8532
|
[38] |
VIGERSKY R A, MCMAHON C. The relationship of hemoglobin A1C to time-in-range in patients with diabetes[J]. Diabetes Technol Ther, 2019, 21(2): 81-85. doi: 10.1089/dia.2018.0310
|
[39] |
AVARI P, UDUKU C, GEORGE D, et al. Differences for percentage times in glycemic range between continuous glucose monitoring and capillary blood glucose monitoring in adults with type 1 diabetes: analysis of the REPLACE-BG dataset[J]. Diabetes Technol Ther, 2020, 22(3): 222-227. doi: 10.1089/dia.2019.0276
|
[40] |
PATTON S R. Adherence to glycemic monitoring in diabetes[J]. J Diabetes Sci Technol, 2015, 9(3): 668-675. doi: 10.1177/1932296814567709
|