WU Baijun, HU Chaoquan. Current status and progress of immunotherapy for pancreatic cancer[J]. Journal of Clinical Medicine in Practice, 2022, 26(13): 134-138, 144. DOI: 10.7619/jcmp.20220016
Citation: WU Baijun, HU Chaoquan. Current status and progress of immunotherapy for pancreatic cancer[J]. Journal of Clinical Medicine in Practice, 2022, 26(13): 134-138, 144. DOI: 10.7619/jcmp.20220016

Current status and progress of immunotherapy for pancreatic cancer

More Information
  • Received Date: January 02, 2022
  • Available Online: June 13, 2022
  • Pancreatic cancer is a common malignant tumor of the digestive system. It is discovered late, has a high degree of malignancy, and has an extremely poor prognosis. The treatment of pancreatic cancer includes surgical resection, chemotherapy, and radiotherapy. Due to its low surgical resection rate and poor sensitivity to chemical and radiotherapy, it leads to a low 5-year survival rate. As a new type of treatment, immunotherapy is used to treat some malignant solid tumors in combination with other treatments, and a certain degree of partial remission has been obtained. After the downgrading, the chance of surgery is obtained and the overall survival of the patient is prolonged, and it brings hope for the comprehensive treatment of pancreatic cancer. This article reviewed the research progress and current situation of pancreatic cancer immunotherapy and other treatment methods, and provided reference for the treatment of pancreatic cancer.

  • [1]
    DUCREUX M, CUHNA A S, CARAMELLA C, et al. Cancer of the pancreas: ESMO Clinical Practice Guidelines for diagnosis, treatment and follow-up[J]. Ann Oncol, 2015, 26(Suppl 5): v56-v68.
    [2]
    CONROY T, HAMMEL P, HEBBAR M, et al. FOLFIRINOX or gemcitabine as adjuvant therapy for pancreatic cancer[J]. N Engl J Med, 2018, 379(25): 2395-2406. doi: 10.1056/NEJMoa1809775
    [3]
    LAMBERT A, SCHWARZ L, BORBATH I, et al. An update on treatment options for pancreatic adenocarcinoma[J]. Ther Adv Med Oncol, 2019, 11: 1758835919875568.
    [4]
    DISIS M L. Mechanism of action of immunotherapy[J]. Semin Oncol, 2014, 41(Suppl 5): S3-S13.
    [5]
    WEI S C, DUFFY C R, ALLISON J P. Fundamental mechanisms of immune checkpoint blockade therapy[J]. Cancer Discov, 2018, 8(9): 1069-1086. doi: 10.1158/2159-8290.CD-18-0367
    [6]
    TANG J, YU J X, HUBBARD-LUCEY V M, et al. Trial watch: the clinical trial landscape for PD1/PDL1 immune checkpoint inhibitors[J]. Nat Rev Drug Discov, 2018, 17(12): 854-855. doi: 10.1038/nrd.2018.210
    [7]
    KASAKOVSKI D, SKRYGAN M, GAMBICHLER T, et al. Advances in targeting cutaneous melanoma[J]. Cancers, 2021, 13(9): 2090. doi: 10.3390/cancers13092090
    [8]
    RUIZ-CORDERO R, DEVINE W P. Targeted therapy and checkpoint immunotherapy in lung cancer[J]. Surg Pathol Clin, 2020, 13(1): 17-33. doi: 10.1016/j.path.2019.11.002
    [9]
    MAJIDPOOR J, MORTEZAEE K. The efficacy of PD-1/PD-L1 blockade in cold cancers and future perspectives[J]. Clin Immunol Orlando Fla, 2021, 226: 108707. doi: 10.1016/j.clim.2021.108707
    [10]
    SIDERAS K, BRAAT H, KWEKKEBOOM J, et al. Role of the immune system in pancreatic cancer progression and immune modulating treatment strategies[J]. Cancer Treat Rev, 2014, 40(4): 513-522. doi: 10.1016/j.ctrv.2013.11.005
    [11]
    ROYAL R E, LEVY C, TURNER K, et al. Phase 2 trial of single agent Ipilimumab (anti-CTLA-4) for locally advanced or metastatic pancreatic adenocarcinoma[J]. J Immunother, 2010, 33(8): 828-833. doi: 10.1097/CJI.0b013e3181eec14c
    [12]
    PATNAIK A, KANG S P, RASCO D, et al. Phase Ι study of pembrolizumab (MK-3475; anti–PD-1 monoclonal antibody) in patients with advanced solid tumors[J]. Clin Cancer Res, 2015, 21(19): 4286-4293. doi: 10.1158/1078-0432.CCR-14-2607
    [13]
    BRAHMER J R, TYKODI S S, CHOW L Q M, et al. Safety and activity of anti-PD-L1 antibody in patients with advanced cancer[J]. N Engl J Med, 2012, 366(26): 2455-2465. doi: 10.1056/NEJMoa1200694
    [14]
    KAMATH S D, KALYAN A, KIRCHER S, et al. Ipilimumab and gemcitabine for advanced pancreatic cancer: a phase ib study[J]. Oncologist, 2019, 25(5): e808-e815.
    [15]
    AGLIETTA M, BARONE C, SAWYER M B, et al. A phase I dose escalation trial of tremelimumab (CP-675, 206) in combination with gemcitabine in chemotherapy-naive patients with metastatic pancreatic cancer[J]. Ann Oncol, 2014, 25(9): 1750-1755. doi: 10.1093/annonc/mdu205
    [16]
    WEISS G J, BLAYDORN L, BECK J, et al. Phase ib/II study of gemcitabine, nab-paclitaxel, and pembrolizumab in metastatic pancreatic adenocarcinoma[J]. Investig New Drugs, 2018, 36(1): 96-102. doi: 10.1007/s10637-017-0525-1
    [17]
    NETWORK C G A. Comprehensive molecular characterization of human colon and rectal cancer[J]. Nature, 2012, 487(7407): 330-337. doi: 10.1038/nature11252
    [18]
    LE D T, DURHAM J N, SMITH K N, et al. Mismatch repair deficiency predicts response of solid tumors to PD-1 blockade[J]. Science, 2017, 357(6349): 409-413. doi: 10.1126/science.aan6733
    [19]
    HU Z I, SHIA J R, STADLER Z K, et al. Evaluating mismatch repair deficiency in pancreatic adenocarcinoma: challenges and recommendations[J]. Clin Cancer Res, 2018, 24(6): 1326-1336. doi: 10.1158/1078-0432.CCR-17-3099
    [20]
    LUCHINI C, BROSENS L A A, WOOD L D, et al. Comprehensive characterisation of pancreatic ductal adenocarcinoma with microsatellite instability: histology, molecular pathology and clinical implications[J]. Gut, 2021, 70(1): 148-156. doi: 10.1136/gutjnl-2020-320726
    [21]
    MARABELLE A, LE D T, ASCIERTO P A, et al. Efficacy of pembrolizumab in patients with noncolorectal high microsatellite instability/mismatch repair-deficient cancer: results from the phase ⅡKEYNOTE-158 study[J]. J Clin Oncol, 2020, 38(1): 1-10. doi: 10.1200/JCO.19.02105
    [22]
    LOLLINI P L, CAVALLO F, NANNI P, et al. Vaccines for tumour prevention[J]. Nat Rev Cancer, 2006, 6(3): 204-216. doi: 10.1038/nrc1815
    [23]
    KARTIKASARI A E R, PRAKASH M D, COX M, et al. Therapeutic cancer vaccines-T cell responses and epigenetic modulation[J]. Front Immunol, 2018, 9: 3109.
    [24]
    LUTZ E, YEO C J, LILLEMOE K D, et al. A lethally irradiated allogeneic granulocyte-macrophage colony stimulating factor-secreting tumor vaccine for pancreatic adenocarcinoma. A Phase Ⅱtrial of safety, efficacy, and immune activation[J]. Ann Surg, 2011, 253(2): 328-335. doi: 10.1097/SLA.0b013e3181fd271c
    [25]
    LE D T, PICOZZI V J, KO A H, et al. Results from a phase IIb, randomized, multicenter study of GVAX pancreas and CRS-207 compared with chemotherapy in adults with previously treated metastatic pancreaticadenocarcinoma (ECLIPSE study)[J]. Clin Cancer Res, 2019, 25(18): 5493-5502. doi: 10.1158/1078-0432.CCR-18-2992
    [26]
    LUTZ E R, WU A A, BIGELOW E, et al. Immunotherapy converts nonimmunogenic pancreatic tumors into immunogenic foci of immune regulation[J]. Cancer Immunol Res, 2014, 2(7): 616-631. doi: 10.1158/2326-6066.CIR-14-0027
    [27]
    SOARES K C, RUCKI A A, WU A A, et al. PD-1/PD-L1 blockade together with vaccine therapy facilitates effector T-cell infiltration into pancreatic tumors[J]. J Immunother, 2015, 38(1): 1-11. doi: 10.1097/CJI.0000000000000062
    [28]
    LE D T, LUTZ E, URAM J N, et al. Evaluation of ipilimumab in combination with allogeneic pancreatic tumor cells transfected with a GM-CSF gene in previously treated pancreatic cancer[J]. Journal of immunotherapy, 2013, 36(7): 382-389. doi: 10.1097/CJI.0b013e31829fb7a2
    [29]
    NATH S, MUKHERJEE P. MUC1: a multifaceted oncoprotein with a key role in cancer progression[J]. Trends Mol Med, 2014, 20(6): 332-342. doi: 10.1016/j.molmed.2014.02.007
    [30]
    PILLAI K, AKHTER J, CHUA T C, et al. Anticancer property of bromelain with therapeutic potential in malignant peritoneal mesothelioma[J]. Cancer Investig, 2013, 31(4): 241-250. doi: 10.3109/07357907.2013.784777
    [31]
    RAMANATHAN R K, LEE K M, MCKOLANIS J, et al. Phase I study of a MUC1 vaccine composed of different doses of MUC1 peptide with SB-AS2 adjuvant in resected and locally advanced pancreatic cancer[J]. Cancer Immunol Immunother, 2005, 54(3): 254-264. doi: 10.1007/s00262-004-0581-1
    [32]
    KAUFMAN H L, KIM-SCHULZE S, MANSON K, et al. Poxvirus-based vaccine therapy for patients with advanced pancreatic cancer[J]. J Transl Med, 2007, 5: 60. doi: 10.1186/1479-5876-5-60
    [33]
    HARRINGTON K, FREEMAN D J, KELLY B, et al. Optimizing oncolytic virotherapy in cancer treatment[J]. Nat Rev Drug Discov, 2019, 18(9): 689-706. doi: 10.1038/s41573-019-0029-0
    [34]
    BIERMAN H R, CRILE D M, DOD K S, et al. Remissions in leukemia of childhood following acute infectious disease: Staphylococcus and Streptococcus, varicella, and feline panleukopenia[J]. Cancer, 1953, 6(3): 591-605. doi: 10.1002/1097-0142(195305)6:3<591::AID-CNCR2820060317>3.0.CO;2-M
    [35]
    MASOUD S J, HU J B, BEASLEY G M, et al. Efficacy of talimogene laherparepvec (T-VEC) therapy in patients with in-transit melanoma metastasis decreases with increasing lesion size[J]. Ann Surg Oncol, 2019, 26(13): 4633-4641. doi: 10.1245/s10434-019-07691-3
    [36]
    KAUFMAN H L, KOHLHAPP F J, ZLOZA A. Oncolytic viruses: a new class of immunotherapy drugs[J]. Nature reviews Drug discovery, 2015, 14(9): 642-662. doi: 10.1038/nrd4663
    [37]
    HIROOKA Y, KASUYA H, ISHIKAWA T, et al. A Phase I clinical trial of EUS-guided intratumoral injection of the oncolytic virus, HF10 for unresectable locally advanced pancreatic cancer[J]. BMC cancer, 2018, 18(1): 596. doi: 10.1186/s12885-018-4453-z
    [38]
    NAKAO A, KASUYA H, SAHIN T T, et al. A phase Ⅰ dose-escalation clinical trial of intraoperative direct intratumoral injection of HF10 oncolytic virus in non-resectable patients with advanced pancreatic cancer[J]. Cancer Gene Ther, 2011, 18(3): 167-175. doi: 10.1038/cgt.2010.65
    [39]
    SAMSON A, SCOTT K J, TAGGART D, et al. Intravenous delivery of oncolytic reovirus to brain tumor patients immunologically primes for subsequent checkpoint blockade[J]. Sci Transl Med, 2018, 10(422): eaam7577. doi: 10.1126/scitranslmed.aam7577
    [40]
    GUJAR S, POL J G, KROEMER G. Heating it up: Oncolytic viruses make tumors ""hot"" and suitable for checkpoint blockade immunotherapies[J]. OncoImmunology, 2018, 7(8): e1442169.
    [41]
    GUJAR S, POL J G, KIM Y, et al. Antitumor benefits of antiviral immunity: an underappreciated aspect of oncolytic virotherapies[J]. Trends Immunol, 2018, 39(3): 209-221. doi: 10.1016/j.it.2017.11.006
    [42]
    RIBAS A, DUMMER R, PUZANOV I, et al. Oncolytic virotherapy promotes intratumoral T cell infiltration and improves anti-PD-1 immunotherapy[J]. Cell, 2017, 170(6): 1109-1119. e10. doi: 10.1016/j.cell.2017.08.027
    [43]
    HE J C, ZHANG Z W, LV S Q, et al. Engineered CAR T cells targeting mesothelin by piggyBac transposon system for the treatment of pancreatic cancer[J]. Cell Immunol, 2018, 329: 31-40. doi: 10.1016/j.cellimm.2018.04.007
    [44]
    BEATTY G L, O'HARA M H, LACEY S F, et al. Activity of mesothelin-specific chimeric antigen receptor T cells against pancreatic carcinoma metastases in a phase 1 trial[J]. Gastroenterology, 2018, 155(1): 29-32. doi: 10.1053/j.gastro.2018.03.029
    [45]
    IMAOKA H, MIZUNO N, HARA K, et al. Prognostic impact of carcinoembryonic antigen (CEA) on patients with metastatic pancreatic cancer: A retrospective cohort study[J]. Pancreatology, 2016, 16(5): 859-864. doi: 10.1016/j.pan.2016.05.007
    [46]
    CHMIELEWSKI M, HAHN O, RAPPL G, et al. T cells that target carcinoembryonic antigen eradicate orthotopic pancreatic carcinomas without inducing autoimmune colitis in mice[J]. Gastroenterology, 2012, 143(4): 1095-1107. e2. doi: 10.1053/j.gastro.2012.06.037
    [47]
    FENG K C, LIU Y, GUO Y L, et al. Phase I study of chimeric antigen receptor modified T cells in treating HER2-positive advanced biliary tract cancers and pancreatic cancers[J]. Protein Cell, 2018, 9(10): 838-847. doi: 10.1007/s13238-017-0440-4
    [48]
    RAJ D, YANG M H, RODGERS D, et al. Switchable CAR-T cells mediate remission in metastatic pancreatic ductal adenocarcinoma[J]. Gut, 2019, 68(6): 1052-1064. doi: 10.1136/gutjnl-2018-316595
    [49]
    WATANABE K, LUO Y, DA T, et al. Pancreatic cancer therapy with combined mesothelin-redirected chimeric antigen receptor T cells and cytokine-armed oncolytic adenoviruses[J]. JCI Insight, 2018, 3(7): e99573. doi: 10.1172/jci.insight.99573
    [50]
    ZHANG E, YANG P, GU J, et al. Recombination of a dual-CAR-modified T lymphocyte to accurately eliminate pancreatic malignancy[J]. J Hematol Oncol, 2018, 11(1): 102. doi: 10.1186/s13045-018-0646-9
    [51]
    LOCKE F L, GHOBADI A, JACOBSON C A, et al. Long-term safety and activity of axicabtagene ciloleucel in refractory large B-cell lymphoma (ZUMA-1): a single-arm, multicentre, phase 1–2 trial[J]. The Lancet Oncology, 2019, 20(1): 31-42. doi: 10.1016/S1470-2045(18)30864-7
  • Cited by

    Periodical cited type(5)

    1. 刘晨,叶健文,王雪梅,李桦. 血清中微小RNA-506、微小RNA-934水平对胰腺癌患者术后生存结局的预测价值. 实用临床医药杂志. 2024(05): 40-43 . 本站查看
    2. 谢扬帆,曹玲敏,汪雪媛,林川,黄海溶. 中国胰腺癌患者肠道菌群多样性组成谱的系统评价. 中国循证医学杂志. 2023(02): 186-190 .
    3. 姚钧天,刘亮,郭津生. 胰腺癌的诊断与精准治疗. 西南医科大学学报. 2023(02): 110-115 .
    4. 丛鹏,苏祥杰,李永. 微小RNA-433-3p靶向滑蛋白调控胰腺癌PANC-1细胞恶性生物学行为的研究. 实用临床医药杂志. 2023(14): 19-25 . 本站查看
    5. 高春,江晶晶,冯富娟,甄英丽,张久聪,蒋觐阳. 基于CiteSpace的胰腺癌免疫治疗研究热点的可视化分析. 胃肠病学和肝病学杂志. 2023(11): 1262-1270 .

    Other cited types(2)

Catalog

    Article views (438) PDF downloads (72) Cited by(7)

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return