Citation: | LU Wenpeng, CHEN Min, CHEN Jie, ZHENG Xinmei, DONG Xiaoyun. Mechanism of Baijiang San in alleviating Crohn's disease by regulating oxidative stress based on bioinformatics analysis[J]. Journal of Clinical Medicine in Practice, 2022, 26(16): 11-17. DOI: 10.7619/jcmp.20221118 |
To explore the target and potential mechanism of Baijiang San in alleviating Crohn's disease (CD) by regulating oxidative stress (OS) based on bioinformatics analysis.
The active ingredients of Baijiang San and their corresponding targets were obtained by using TCMSP database. CD related datasets (GSE36807, GSE59071 and GSE102133) were downloaded from GEO database, and the CD differential genes obtained by differential analysis were used as targets for disease treatment. CD differential genes obtained by differential analysis were used as therapeutic targets for diseases. OS-related genes were searched in Genecards database, and the common targets of drug active ingredients, diseases and OS-related genes were obtained. Cytoscape software was used to construct the "compound-target" regulatory network; the protein-protein interaction (PPI) network was made in String database, and the data were imported into Cytoscape software to screen the core targets using Cytohubba plug-in; R software was used for Gene Ontology (GO) and Kyoto Encyclopedia of Genes and Genomes (KEGG) enrichment analysis; microRNA (miRNA) was predicted by Mirtarbase database, Starbase database and Targetscan database; the Enrichr database was used to predict transcription factor (TF) and Cytoscape software was used to construct "miRNA-TF-mRNA" networks.
There were 175 differential CD genes, including 135 up-regulated genes and 40 down-regulated genes. In TCMSP database, Baijiang San included 9 effective ingredients in Yiyiren, 21 effective ingredients in Fuzi and 13 effective ingredients in Baijiangcao. The top 5 core genes screened by Cytohubba were interleukin-1β (IL-1β), prostaglandin-endoperoxide synthase 2 (PTGS2), C-X-C motif chemokine ligand 8 (CXCL8), intercellular adhesion molecule 1 (ICAM1), vascular endothelial cell growth factor-A receptor (KDR). Quercetin and kaempferol were the most common targets of drug components. The main pathways of KEGG enrichment analysis were advanced glycation end product (AGE)-receptor for AGE (AGE-RAGE) signaling pathway, nuclear factor-kappa B (NF-κB) signaling pathway and tumor necrosis factor (TNF) signaling pathway in diabetic complications; a total of 76 miRNAs and 5 transcription factors were predicted.
The mechanisms of Baijiang San in alleviating CD by regulating OS are a multi-component, multi-target and multi-pathway biological process.
[1] |
FEUERSTEIN J D, CHEIFETZ A S. Crohn disease: epidemiology, diagnosis, and management[J]. Mayo Clin Proc, 2017, 92(7): 1088-1103. doi: 10.1016/j.mayocp.2017.04.010
|
[2] |
PARKER C E, NGUYEN T M, SEGAL D, et al. Low dose naltrexone for induction of remission in Crohn's disease[J]. Cochrane Database Syst Rev, 2018, 4(4): CD010410.
|
[3] |
汪燕燕, 戴钰洁, 胡乃中, 等. 英夫利西单抗治疗克罗恩病的临床评价[J]. 中国新药与临床杂志, 2021, 40(11): 756-759. https://www.cnki.com.cn/Article/CJFDTOTAL-XYYL202111006.htm
|
[4] |
柴常伟, 张翼翔, 张海婧, 等. 治疗炎症性肠道疾病的新兴靶点与药物[J]. 药学学报, 2022, 57(5): 1282-1288. https://www.cnki.com.cn/Article/CJFDTOTAL-YXXB202205007.htm
|
[5] |
曾耀明, 汪洋鹏, 柯晓. 基于藏象学说论治炎症性肠病的理论探讨[J]. 中华中医药学刊, 2018, 36(10): 2375-2377. https://www.cnki.com.cn/Article/CJFDTOTAL-ZYHS201810019.htm
|
[6] |
张锁, 陈晶. 薏苡附子败酱散加味临床应用探析[J]. 中华中医药杂志, 2021, 36(1): 263-266. https://www.cnki.com.cn/Article/CJFDTOTAL-BXYY202101068.htm
|
[7] |
柴妮, 朱惠蓉, 叶进. 薏苡附子败酱散的文献分析及研究评述[J]. 时珍国医国药, 2020, 31(4): 1001-1004. doi: 10.3969/j.issn.1008-0805.2020.04.073
|
[8] |
宋厚盼, 刘恒铭, 仇婧玥, 等. 胃癌发病关键基因调控网络构建及其靶向治疗中药活性成分筛选研究[J]. 中草药, 2021, 52(22): 6939-6952. doi: 10.7501/j.issn.0253-2670.2021.22.020
|
[9] |
CHOU C H, SHRESTHA S, YANG C D, et al. miRTarBase update 2018: a resource for experimentally validated microRNA-target interactions[J]. Nucleic Acids Res, 2018, 46(D1): D296-D302. doi: 10.1093/nar/gkx1067
|
[10] |
YANG J H, LI J H, SHAO P, et al. starBase: a database for exploring microRNA-mRNA interaction maps from Argonaute CLIP-Seq and Degradome-Seq data[J]. Nucleic Acids Res, 2011, 39(Database issue): D202-D209.
|
[11] |
AGARWAL V, BELL G W, NAM J W, et al. Predicting effective microRNA target sites in mammalian mRNAs[J]. eLife, 2015, 4: e05005. doi: 10.7554/eLife.05005
|
[12] |
KHANNA S, RAFFALS L E. The microbiome in Crohn's disease: role in pathogenesis and role of microbiome replacement therapies[J]. Gastroenterol Clin North Am, 2017, 46(3): 481-492. doi: 10.1016/j.gtc.2017.05.004
|
[13] |
李红, 杨龙宝, 赵刚, 等. 质子泵抑制剂联合雷尼替丁对消化性溃疡的治疗效果及对谷胱甘肽过氧化物酶、脂质过氧化物水平的影响[J]. 实用临床医药杂志, 2021, 25(21): 21-24. doi: 10.7619/jcmp.20212263
|
[14] |
薛华, 魏胜全, 王智杰, 等. 慢性阻塞性肺疾病稳定期患者肺功能、营养状况及氧化应激能力分析[J]. 实用临床医药杂志, 2019, 23(9): 65-68. doi: 10.7619/jcmp.201909019
|
[15] |
陈丽霏, 张世倡, 肖林, 等. 炎症性肠病中活性氧及抗氧化的研究进展[J]. 中国当代医药, 2020, 27(9): 24-27. doi: 10.3969/j.issn.1674-4721.2020.09.008
|
[16] |
王叶情, 王宇红, 邹蔓姝, 等. 槲皮素及其糖苷衍生物抗抑郁作用及其机制的研究进展[J]. 中草药, 2022, 53(5): 1548-1557. https://www.cnki.com.cn/Article/CJFDTOTAL-ZCYO202205030.htm
|
[17] |
李泳欣. Nrf2-ARE信号通路抵御小鼠乳腺氧化应激的分子机制及槲皮素对其调控研究[D]. 杭州: 浙江大学, 2021.
|
[18] |
吴柳, 蒋永艳, 刘微, 等. 槲皮素通过PI3K/AKT/mTOR通路减轻脓毒症小鼠心肌损伤[J]. 中国急救医学, 2021, 41(3): 238-243. doi: 10.3969/j.issn.1002-1949.2021.03.011
|
[19] |
玄露露, 李彦秋, 王怀杰, 等. 山奈酚调控AMPK/NOX4通路抑制高糖诱导的肾小球系膜细胞氧化应激和胞外基质积聚[J]. 天然产物研究与开发, 2021, 33(7): 1102-1111. https://www.cnki.com.cn/Article/CJFDTOTAL-TRCW202107004.htm
|
[20] |
徐伟, 廖冬发, 吴畏, 等. IL-1β通过诱导氧化应激促进软骨表层细胞衰老[J]. 免疫学杂志, 2022, 38(2): 164-169. doi: 10.3760/cma.j.issn.1673-4394.2022.02.009
|
[21] |
张霁, 吴丽洁, 李志元, 等. 隔药灸对克罗恩病大鼠结肠NLRP3炎症小体及IL-1β调节作用的实验研究[J]. 上海针灸杂志, 2019, 38(2): 119-126. https://www.cnki.com.cn/Article/CJFDTOTAL-SHZJ201902001.htm
|
[22] |
陈洁玲, 沈杰, 刘国正. "益气解毒化瘀方"联合常规西药治疗溃疡性结肠炎30例临床研究[J]. 江苏中医药, 2021, 53(3): 34-37. https://www.cnki.com.cn/Article/CJFDTOTAL-JSZY202103016.htm
|
[23] |
SAINI S, LIU T G, YOO J. TNF-α stimulates colonic myofibroblast migration via COX-2 and Hsp27[J]. J Surg Res, 2016, 204(1): 145-152. doi: 10.1016/j.jss.2016.04.034
|
[24] |
刘迎春, 梅红, 高源, 等. 儿童克罗恩病差异表达基因的生物信息学分析[J]. 中国现代应用药学, 2020, 37(17): 2148-2152. https://www.cnki.com.cn/Article/CJFDTOTAL-XDYD202017019.htm
|
[25] |
高书华, 柴欣悦, 刘杭丰, 等. CXC趋化因子配体8促进结直肠癌微环境中M2型巨噬细胞趋化及浸润[J]. 中国生物化学与分子生物学报, 2022, 38(4): 495-504. https://www.cnki.com.cn/Article/CJFDTOTAL-SWHZ202204012.htm
|
[26] |
YARUR A J, JAIN A, QUINTERO M A, et al. Inflammatory cytokine profile in Crohn's disease nonresponders to optimal antitumor necrosis factor therapy[J]. J Clin Gastroenterol, 2019, 53(3): 210-215. doi: 10.1097/MCG.0000000000001002
|
[27] |
闫文生, 姜勇, 赵克森. ICAM-1基因表达的调节[J]. 国外医学: 生理、病理科学与临床分册, 2001, 21(5): 397-399. https://www.cnki.com.cn/Article/CJFDTOTAL-WYSB200105027.htm
|
[28] |
WU H B, YANG S, WENG H Y, et al. Autophagy-induced KDR/VEGFR-2 activation promotes the formation of vasculogenic mimicry by glioma stem cells[J]. Autophagy, 2017, 13(9): 1528-1542. doi: 10.1080/15548627.2017.1336277
|
[29] |
SNELSON M, LUCUT E, COUGHLAN M T. The role of AGE-RAGE signalling as a modulator of gut permeability in diabetes[J]. Int J Mol Sci, 2022, 23(3): 1766. doi: 10.3390/ijms23031766
|
[30] |
许笑雯, 储全根, 储俊, 等. 痰瘀同治法对糖尿病大鼠心肌微血管病变AGEs/RAGE轴及氧化应激的影响[J]. 南方医科大学学报, 2021, 41(10): 1527-1533. doi: 10.12122/j.issn.1673-4254.2021.10.11
|
[31] |
张丹. 黄蜀葵花总黄酮通过NF-κB信号通路调控自噬治疗克罗恩病的作用机制研究[D]. 南京: 南京中医药大学, 2019.
|
[32] |
聂君书, 胡惠洁, 徐晶, 等. NF-κB在动物应激调控中的作用及机制研究进展[J]. 中国兽医学报, 2021, 41(9): 1874-1878. https://www.cnki.com.cn/Article/CJFDTOTAL-ZSYX202109033.htm
|
[33] |
ADEGBOLA S O, SAHNAN K, WARUSAVITARNE J, et al. Anti-TNF therapy in Crohn's disease[J]. Int J Mol Sci, 2018, 19(8): 2244. doi: 10.3390/ijms19082244
|
[34] |
李青霞. 抗TNF-α制剂降阶梯治疗克罗恩病的疗效与安全性的Meta分析[D]. 太原: 山西医科大学, 2021.
|
[35] |
ZHUANG X J, CHEN B L, HUANG S S, et al. Hypermethylation of miR-145 promoter-mediated SOX9-CLDN8 pathway regulates intestinal mucosal barrier in Crohn's disease[J]. EBioMedicine, 2022, 76: 103846. doi: 10.1016/j.ebiom.2022.103846
|
[36] |
BAI J N, YU J C, WANG J T, et al. DNA methylation of miR-122 aggravates oxidative stress in colitis targeting SELENBP1 partially by p65NF-κ B signaling[J]. Oxid Med Cell Longev, 2019, 2019: 5294105.
|