LI Ruibiao, REN Chengbo, WANG Cong, LI Yaru. Comparison of the efficacy of dosimetric parameters defined by different lung volume methods in predicting radiation pneumonitis in patients with non-small cell lung cancer[J]. Journal of Clinical Medicine in Practice, 2022, 26(19): 5-8, 13. DOI: 10.7619/jcmp.20221246
Citation: LI Ruibiao, REN Chengbo, WANG Cong, LI Yaru. Comparison of the efficacy of dosimetric parameters defined by different lung volume methods in predicting radiation pneumonitis in patients with non-small cell lung cancer[J]. Journal of Clinical Medicine in Practice, 2022, 26(19): 5-8, 13. DOI: 10.7619/jcmp.20221246

Comparison of the efficacy of dosimetric parameters defined by different lung volume methods in predicting radiation pneumonitis in patients with non-small cell lung cancer

More Information
  • Received Date: April 14, 2022
  • Available Online: October 23, 2022
  • Objective 

    To compare the efficacy of dosimetric parameters defined by different lung volume methods in predicting radiation pneumonitis (RP) in patients with non-small cell lung cancer after radiotherapy.

    Methods 

    A total of 92 patients with non-small cell lung cancer who received intensity-modulated radiotherapy were selected as study objects. Total lung volume, planned target volume (PTV) and planned gross tumor target volume (PGTV) were recorded by CT scan. Dosimetric parameters including volume percentage of normal lung relative volume receiving greater than 5 Gy (V5), volume percentage of normal lung relative volume receiving greater than 20 Gy (V20) and mean lung dose (MLD) were defined by three lung volume methods (total lung volume, PTV and PGTV). The primary endpoint was symptomatic RP. The correlations of symptomatic RP with dose parameters(V5, V20 and MLD) were analyzed by Logistic regression, and the performance of MLD in predicting symptomatic RP was assessed using the area under the receiver operating characteristic curve (AUC).

    Results 

    Of 92 patients, 13 developed acute symptomatic RP within 3 months after treatment. There were significant differences in V5, V20 and MLD defined by PTV in symptomatic RP compared with non-symptomatic RP patients (P < 0.05). Logistic regression analysis showed that MLD defined by PTV method and PGTV method was associated with the incidence of symptomatic RP (P < 0.05). In predicting symptomatic RP, MLD defined by PTV had the highest AUC value (0.798), which was significantly higher than 0.699 by PGTV and 0.605 by whole lung volume (P < 0.05).

    Conclusion 

    Dosimetric parameters defined by PTV have high value in predicting symptomatic RP in lung cancer patients undergoing intensity-modulated radiotherapy.

  • [1]
    冯勤付, 郑苗丽, 曾强. 放射性肺炎的诊断和治疗[J]. 中华放射肿瘤学杂志, 2021, 30(1): 7-10. https://www.cnki.com.cn/Article/CJFDTOTAL-JLYX201311117.htm
    [2]
    陈斌, 石翔翔, 唐涛. 局部晚期周围型非小细胞肺癌调强放疗中大体肿瘤靶区体积变化及肺受量预测研究[J]. 中华肿瘤防治杂志, 2020, 27(14): 1166-1170. https://www.cnki.com.cn/Article/CJFDTOTAL-QLZL202014011.htm
    [3]
    PARK K, VANSTEENKISTE J, LEE K H, et al. Pan-Asian adapted ESMO Clinical Practice Guidelines for the management of patients with locally-advanced unresectable non-small-cell lung cancer: a KSMO-ESMO initiative endorsed by CSCO, ISMPO, JSMO, MOS, SSO and TOS[J]. Ann Oncol, 2020, 31(2): 191-201. doi: 10.1016/j.annonc.2019.10.026
    [4]
    GHITA M, DUNNE V L, MCMAHON S J, et al. Preclinical evaluation of dose-volume effects and lung toxicity occurring in and out-of-field[J]. Int J Radiat Oncol Biol Phys, 2019, 103(5): 1231-1240. doi: 10.1016/j.ijrobp.2018.12.010
    [5]
    HUANG P, YAN H, HU Z, et al. Predicting radiation pneumonitis with fuzzy clustering neural network using 4DCT ventilation image based dosimetric parameters[J]. Quant Imaging Med Surg, 2021, 11(12): 4731-4741. doi: 10.21037/qims-20-1095
    [6]
    BOONYAWAN K, GOMEZ D R, KOMAKI R, et al. Clinical and dosimetric factors predicting grade ≥2 radiation pneumonitis after postoperative radiotherapy for patients with non-small cell lung carcinoma[J]. Int J Radiat Oncol Biol Phys, 2018, 101(4): 919-926. doi: 10.1016/j.ijrobp.2018.04.012
    [7]
    ROACH M C, BRADLEY J D, ROBINSON C G. Optimizing radiation dose and fractionation for the definitive treatment of locally advanced non-small cell lung cancer[J]. J Thorac Dis, 2018, 10(suppl 21): S2465-S2473.
    [8]
    NESTLE U, DE RUYSSCHER D, RICARDI U, et al. ESTRO ACROP guidelines for target volume definition in the treatment of locally advanced non-small cell lung cancer[J]. Radiother Oncol, 2018, 127(1): 1-5. doi: 10.1016/j.radonc.2018.02.023
    [9]
    BASCH E, DUECK A C, ROGAK L J, et al. Feasibility of implementing the patient-reported outcomes version of the common terminology criteria for adverse events in a multicenter trial: NCCTG N1048[J]. J Clin Oncol, 2018: JCO2018788620.
    [10]
    KRAFFT S P, RAO A, STINGO F, et al. The utility of quantitative CT radiomics features for improved prediction of radiation pneumonitis[J]. Med Phys, 2018, 45(11): 5317-5324. doi: 10.1002/mp.13150
    [11]
    KKRAFFTIM B H, KSIM J S, KPIM, K H, et al. Clinical significance of radiation dose-volume parameters and functional status on the patient-reported quality of life changes after thoracic radiotherapy for lung cancer: a prospective study[J]. Radiol Med, 2021, 126(3): 466-473. doi: 10.1007/s11547-020-01273-0
    [12]
    BUCKNELL N W, HARDCASTLE N, BRESSEL M, et al. Functional lung imaging in radiation therapy for lung cancer: a systematic review and meta-analysis[J]. Radiother Oncol, 2018, 129(2): 196-208. doi: 10.1016/j.radonc.2018.07.014
    [13]
    LEE S J, PARK H J. Single photon emission computed tomography (SPECT) or positron emission tomography (PET) imaging for radiotherapy planning in patients with lung cancer: a meta-analysis[J]. Sci Rep, 2020, 10(1): 14864. doi: 10.1038/s41598-020-71445-5
    [14]
    WANG D, BI N, ZHANG T, et al. Comparison of efficacy and safety between simultaneous integrated boost intensity-modulated radiotherapy and conventional intensity-modulated radiotherapy in locally advanced non-small-cell lung cancer: a retrospective study[J]. Radiat Oncol, 2019, 14(1): 106.
    [15]
    任建新, 巩贯忠, 马星民, 等. 不同CT值赋值法对脑转移瘤放疗剂量计算影响的研究[J]. 中华放射医学与防护杂志, 2020, 40(1): 26-31.
  • Related Articles

    [1]WANG Yanhu, XIAO Wei, FANG Shencun, WANG Huichi, HONG Mei, CHAI Lin, CHANG Yuan, ZHENG Wei, ZHU Nuo. Establishment and validation of a Nomogram model for predicting acute radiation dermatitis caused by intensity modulated radiotherapy for esophageal cancer[J]. Journal of Clinical Medicine in Practice, 2023, 27(1): 26-30, 59. DOI: 10.7619/jcmp.20222370
    [2]YUAN Meifang, YANG Yi, SUN Mengzhen, WEN Xiaobo, ZHAO Biao. Study on thyroid radiation dose of two intensity-modulated radiotherapy plans after radical mastectomy of left breast cancer[J]. Journal of Clinical Medicine in Practice, 2021, 25(24): 16-19. DOI: 10.7619/jcmp.20213277
    [3]MA Hui, GUO Xinwei, YE Hongxun, GAO Fei. Volumetric modulated arc therapy versus fixed-field intensity-modulated radiotherapy in radical radiotherapy for cervical cancer[J]. Journal of Clinical Medicine in Practice, 2020, 24(20): 44-46,50. DOI: 10.7619/jcmp.202020012
    [4]YUAN Meifang, ZHAO Biao, YANG Yi, TANG Kewei, AN Yijun. Static intensity-modulated radiotherapy versus volumetric modulated arc therapy in dosimetric parameters of target area and organs at risk for middle thoracic esophageal cancer[J]. Journal of Clinical Medicine in Practice, 2020, 24(15): 21-24. DOI: 10.7619/jcmp.202015006
    [5]PAN Xiang, LI Ya, ZHU Sijin, YANG Yi. Dosimetry difference between field-in-field intensity modulated radiation therapy and fixed field inversely optimized intensity modulated radiation therapy in whole brain radiotherapy[J]. Journal of Clinical Medicine in Practice, 2019, 23(19): 12-16. DOI: 10.7619/jcmp.201919003
    [6]AN Xuehong, CAO Hekui, DUAN Shuhao. Effect of spiral fault fixed field intensity modulated radiation therapy on esophageal cancer in middle segment[J]. Journal of Clinical Medicine in Practice, 2018, (11): 101-103. DOI: 10.7619/jcmp.201811028
    [7]LIU Jie, LU Ruizhen, GE Fang, WANG Xiaoli. Effect of preventive nursing for radiation pneumonia patients with radiotherapy[J]. Journal of Clinical Medicine in Practice, 2016, (20): 40-42,63. DOI: 10.7619/jcmp.201620013
    [8]LIANG Xiangcun, WANG Qing, LIANG Kai, CAI Hongmei, LIANG Jian, ZHANG Hongbin, ZHAO Min. Preliminary research on stage Ⅲ non-small cell lung cancer patients treated with intensity-modulated radiotherapy without delineation of clinical target volume[J]. Journal of Clinical Medicine in Practice, 2016, (7): 31-33. DOI: 10.7619/jcmp.201607009
    [9]SONG Chengxia, WANG Jing. Dosimetric study of volumetric modulated arc therapy and intensity modulated radiation therapy in postoperative radiotherapy of cervical carcinoma[J]. Journal of Clinical Medicine in Practice, 2015, (23): 75-77,81. DOI: 10.7619/jcmp.201523023
    [10]ZHAO Yihong, GAO Junmao, HE Heliang. Long-term efficacy of small target region intensity-modulated radiotherapy and chemotherapy in treatment of patients with nasopharyngeal cancer[J]. Journal of Clinical Medicine in Practice, 2015, (21): 73-76. DOI: 10.7619/jcmp.201521020
  • Cited by

    Periodical cited type(5)

    1. 冯学辉,田龙,胡逸民. 立体定向放射外科治疗脑转移瘤患者颅内出血相关风险因素分析. 国际神经病学神经外科学杂志. 2023(06): 34-39 .
    2. 姜晓颖,张晓磊,翟瑞杰,赵晓燕,任文娟. 维持性血液透析患者脑出血的发生与血脂、血压及营养状态等因素的相关性分析. 系统医学. 2022(14): 1-4 .
    3. 林雪云,石一杰,祝轩,朱会英,邓良彬. 脑微出血与高血压性脑出血转归的关系的纵向研究. 智慧健康. 2021(13): 52-54 .
    4. 张荣,杨鑫泉,熊婷,唐姗,艾可青,钟红艳,毛永清,王大新. GKT137831降低活性氧自由基水平来缓解阿托伐他汀所致的骨骼肌糖摄取下降. 实用临床医药杂志. 2019(10): 53-57 . 本站查看
    5. 黄荣. 他汀类药物治疗脑出血合并高脂血症的效果观察. 基层医学论坛. 2019(29): 4181-4183 .

    Other cited types(0)

Catalog

    Article views (199) PDF downloads (12) Cited by(5)

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return