XUE Huimin, CHEN Tao, ZHU Xiaojun. Analysis of postoperative recurrence and risk factors of patients with liver cancer after radical resection[J]. Journal of Clinical Medicine in Practice, 2022, 26(18): 35-38. DOI: 10.7619/jcmp.20221356
Citation: XUE Huimin, CHEN Tao, ZHU Xiaojun. Analysis of postoperative recurrence and risk factors of patients with liver cancer after radical resection[J]. Journal of Clinical Medicine in Practice, 2022, 26(18): 35-38. DOI: 10.7619/jcmp.20221356

Analysis of postoperative recurrence and risk factors of patients with liver cancer after radical resection

More Information
  • Received Date: April 25, 2022
  • Available Online: October 23, 2022
  • Objective 

    To investigate the postoperative recurrence and risk factors of patients with liver cancer after radical resection.

    Methods 

    The clinical data of 304 patients with liver cancer after radical resection who were treated in the Affiliated Hospital of Nantong University from January 2019 to January 2021 were retrospectively analyzed, the patients were divided into recurrence group and non-recurrence group according to whether they recurred within 1 year of follow-up. The recurrence conditions of patients with liver cancer after radical resection were recorded, and the risk factors of recurrence of patients with liver cancer after radical resection were analyzed by univariate analysis and multivariate Logistic regression analysis.

    Results 

    Of 304 patients with liver cancer after radical resection, 61 cases recurred within 1 year of follow-up, and the recurrence rate was 20.07%. There were significant differences between the recurrence group and the non-recurrence group in terms of tumor diameter, the number of tumors, existence of tumor capsular infiltration and vascular invasion, tumor capsule, andpreoperative level of serum alpha-fetoprotein (AFP) (P < 0.05). The results of multivariate Logistic regression analysis showed that tumor diameter ≥5 cm, the number of tumors ≥2, tumor capsule invasion, vascular invasion, incomplete tumor capsule, and preoperative level of serum AFP ≥400 ng/mL were all independent risk factors for recurrence of patients with liver cancer after radical resection (OR=3.411, 3.313, 3.834, 4.092, 3.235, 3.408, P < 0.05).

    Conclusion 

    The recurrence rate of patients after radical resection of liver cancer is high, and its risk factors include tumor diameter ≥ 5 cm, the number of tumors ≥ 2, tumor capsule invasion, vascular invasion, incomplete tumor capsule and preoperative level of serum AFP ≥ 400 ng/mL, etc., clinical treatment and intervention could be carried out for patients with the above characteristics to prevent the recurrence of patients with liver cancer after radical resection.

  • [1]
    刘佳, 刘俊, 朱坪. 射频消融辅助改良ALPPS术治疗老年原发性肝癌的临床效果及对术后局部复发的影响[J]. 中国肿瘤外科杂志, 2022, 14(1): 89-93. https://www.cnki.com.cn/Article/CJFDTOTAL-ZLWK202201018.htm
    [2]
    刘凯, 彭江, 何自力. 实时超声导航下解剖性肝段切除应用于原发性肝癌治疗中的价值[J]. 中国医师杂志, 2022(2): 212-215. doi: 10.3760/cma.j.cn431274-20210301-00242
    [3]
    辛叶, 王波, 韩海心. PABD对行肝癌根治术患者的炎性因子、免疫指标及预后的影响[J]. 实用癌症杂志, 2021, 36(10): 1666-1668. doi: 10.3969/j.issn.1001-5930.2021.10.027
    [4]
    GRUTTADAURIA S, BARBERA F, CONALDI P G, et al. Clinical and molecular-based approach in the evaluation of hepatocellular carcinoma recurrence after radical liver resection[J]. Cancers: Basel, 2021, 13(3): 518. doi: 10.3390/cancers13030518
    [5]
    李传红, 邓永, 欧晏娇, 等. 肝癌根治性切除术后肝癌复发影响因素的临床研究及预测系统的初步探索[J]. 第三军医大学学报, 2018, 40(24): 2249-2253. doi: 10.16016/j.1000-5404.201807041
    [6]
    中国抗癌协会肝癌专业委员会. 原发性肝癌诊断标准[J]. 中华肝脏病杂志, 2000, 8(3): 135-135. doi: 10.3760/j.issn:1007-3418.2000.03.002
    [7]
    李长贤, 张慧, 吴晓峰, 等. 不同中国肝癌分期肝癌根治性切除术后的临床效果及预后因素分析[J]. 中华外科杂志, 2021, 59(2): 134-143.
    [8]
    SAITO R, AMEMIYA H, HOSOMURA N, et al. Prognostic significance of treatment strategies for the recurrent hepatocellular carcinomas after radical resection[J]. In Vivo, 2020, 34(3): 1265-1270. doi: 10.21873/invivo.11900
    [9]
    ZHAO Y, WU L, QIN H, et al. Preoperative combi-elastography for the prediction of early recurrence after curative resection of hepatocellular carcinoma[J]. Clin Imaging, 2021, 79: 173-178. doi: 10.1016/j.clinimag.2021.05.020
    [10]
    苏敬博, 张景玮, 陈晨, 等. 辅助化疗对肝内胆管癌根治性切除术后患者预后的影响[J]. 中华外科杂志, 2022, 60(4): 356-362. doi: 10.3760/cma.j.cn112139-20220110-00021
    [11]
    牟思玉, 辛洋, 李天翔, 等. 肝细胞癌根治性切除术后复发伴门静脉癌栓危险因素分析[J]. 中国实用外科杂志, 2019, 39(6): 610-614. https://www.cnki.com.cn/Article/CJFDTOTAL-ZGWK201906023.htm
    [12]
    兆勇, 李井野. 老年肝癌根治性切除术后肝癌复发的高危因素分析[J]. 现代肿瘤医学, 2020, 28(21): 3745-3748. https://www.cnki.com.cn/Article/CJFDTOTAL-SXZL202021025.htm
    [13]
    夏晓露, 肖玉玲, 邱培, 等. 肝癌根治性切除术后复发的高危因素分析[J]. 实用癌症杂志, 2020, 35(11): 1875-1878. https://www.cnki.com.cn/Article/CJFDTOTAL-SYAZ202011035.htm
    [14]
    王慧霞. 腹腔镜肝癌根治性切除术后肝癌复发的影响因素分析[J]. 肿瘤基础与临床, 2019, 32(1): 38-42. https://www.cnki.com.cn/Article/CJFDTOTAL-HLZL201901012.htm
    [15]
    GRUTTADAURIA S, PAGANO D, CORSINI L R, et al. Impact of margin status on long-term results of liver resection for hepatocellular carcinoma: single-center time-to-recurrence analysis[J]. Updates Surg, 2020, 72(1): 109-117.
    [16]
    陈姚, 陈义发, 刀辰冉, 等. 肝细胞癌根治性切除术后复发患者不同局部治疗方法疗效比较[J]. 中华肝脏外科手术学电子杂志, 2018, 7(4): 305-310. https://www.cnki.com.cn/Article/CJFDTOTAL-ZHZW201804012.htm
    [17]
    陈凯, 杨洪吉, 邓小凡, 等. 肝癌根治性切除术后早期复发危险因素分析及预测模型构建[J]. 中华肿瘤防治杂志, 2018, 25(5): 344-348. https://www.cnki.com.cn/Article/CJFDTOTAL-QLZL201805009.htm
    [18]
    GAO Z, DU G, PANG Y, et al. Adjuvant transarterial chemoembolization after radical resection contributed to the outcomes of hepatocellular carcinoma patients with high-risk factors[J]. Medicine: Baltimore, 2017, 96(33): e7426.
    [19]
    周正, 林晓, 林楠, 等. 肝细胞癌切除术后复发的临床预测模型的建立及其预测价值[J]. 中华肝脏外科手术学电子杂志, 2017, 6(3): 192-196. https://www.cnki.com.cn/Article/CJFDTOTAL-ZHZW201703013.htm
    [20]
    李丽, 李文华. 血清GP73、AFP水平联合病理特征的肝癌术后预测复发模型的价值[J]. 肝脏, 2019, 24(9): 1031-1033. https://www.cnki.com.cn/Article/CJFDTOTAL-ZUAN201909018.htm
  • Related Articles

    [1]MA Jiajia, LIU Xiaoxin, XUE Bei, FENG Jing, ZHANG Zhengmin, YAO Liping, JU Xinxing, LIU Tingting. Risk prediction model construction of postoperative pulmonary infection in lung cancer patients undergoing four-level thoracoscopic surgery based on machine learning algorithms[J]. Journal of Clinical Medicine in Practice, 2025, 29(6): 111-117. DOI: 10.7619/jcmp.20245679
    [2]DU Fengming, CAO Xiaohua, LIU Ruichen, HU Chaoyang, SUN Yan. Establishment of artificial neural network model based on mitochondria-associated genes in Crohn's disease[J]. Journal of Clinical Medicine in Practice, 2024, 28(23): 8-15. DOI: 10.7619/jcmp.20242822
    [3]DING Jiali, LIU Xiaoguang, SHI Tian, MA Qiang, QI Yajie, LI Yuping, YU Hailong, LU Guangyu. Construction of a risk prediction model for enteral nutrition feeding intolerance in patients with severe cerebral hemorrhage based on machine learning algorithms[J]. Journal of Clinical Medicine in Practice, 2024, 28(12): 1-6. DOI: 10.7619/jcmp.20240467
    [4]SHI Haomin, YAN Su, QIAO Mengmeng, YANG Huilian. Research on gastric cancer lymph node metastasis prediction model based on machine learning algorithms[J]. Journal of Clinical Medicine in Practice, 2024, 28(1): 41-47, 61. DOI: 10.7619/jcmp.20233076
    [5]ZHANG Jiangnan, LI Ronghua, ZHOU Hongmei, XU Minyi, CAI Liangyu. Establishment of a predictive model for the risk of deep vein thrombosis after orthopedic surgery in the lower extremities and its verification[J]. Journal of Clinical Medicine in Practice, 2023, 27(23): 73-78. DOI: 10.7619/jcmp.20231971
    [6]ZHAN Xianfa, YU Xiaoya, WANG Hongjun, XIONG Kunlin. Efficacy of three machine learning algorithms in evaluating stability of carotid plaque in patients with cerebral infarction[J]. Journal of Clinical Medicine in Practice, 2023, 27(22): 6-12. DOI: 10.7619/jcmp.20232657
    [7]WANG Yu, CHU Jiadong, SUN Na, HAN Qiang, SHEN Yueping, ZHOU Lei, ZHU Xinping, ZHANG Xiaobin, YANG Yong. Construction of a predictive model for auxiliary diagnosis of perinatal depression and screening of machine learning algorithm[J]. Journal of Clinical Medicine in Practice, 2023, 27(18): 93-99. DOI: 10.7619/jcmp.20232044
    [8]WANG Yiren, LIU Aiai, ZHAN Xiang, LUO Yan, ZHOU Ping. Screening of genetic markers for diagnosis of nasopharyngeal carcinoma based on machine learning algorithm[J]. Journal of Clinical Medicine in Practice, 2023, 27(7): 6-11. DOI: 10.7619/jcmp.20230091
    [9]WANG Xiaoli, QU Hang, CHENG Weiyan, ZHAO Yi, CAI Yujian, WANG Wei. Application value of X-ray radiomics in distinguishing benign and malignant breast lesions and the efficacy comparison of three predictive models[J]. Journal of Clinical Medicine in Practice, 2021, 25(8): 21-24. DOI: 10.7619/jcmp.20210555
    [10]Influence of electro acupuncture on learning and memory capability and hippocampal neuronal apoptosis in AD model SD rats[J]. Journal of Clinical Medicine in Practice, 2015, (1): 1-6. DOI: 10.7619/jcmp.201501001

Catalog

    Article views (210) PDF downloads (11) Cited by()

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return