Citation: | LIU Min, XU Xia, WANG Rong, LIU Changhua, XU Daoliang. Research progress of erythropoietin derivatives in acute kidney injury[J]. Journal of Clinical Medicine in Practice, 2022, 26(18): 144-148. DOI: 10.7619/jcmp.20221691 |
Erythropoietin (EPO) is widely used in the treatment of renal anemia because of its effect of promoting hematopoietic function of bone marrow. EPO not only acts as erythropoiesis, but also plays important roles in tissue protection. When EPO binds to a heterodimer receptor composed of EPOR and β common receptor (βCR) subunits, only a brief occupation of the receptor initiates a lasting biological effect to protect tissues and organs, but no has participation in erythropoiesis. In recent years, the protective effects of EPO derivatives that activation of EPOR/βCR exclusively in multiple tissues and organs have been studied. This study reviewed the research progress of EPO derivatives in acute renal injury.
[1] |
OGBADU J, SINGH G, AGGARWAL D. Factors affecting the transition of acute kidney injury to chronic kidney disease: potential mechanisms and future perspectives[J]. Eur J Pharmacol, 2019, 865: 172711. doi: 10.1016/j.ejphar.2019.172711
|
[2] |
YANG L, XING G L, WANG L, et al. Acute kidney injury in China: a cross-sectional survey[J]. Lancet, 2015, 386(10002): 1465-1471. doi: 10.1016/S0140-6736(15)00344-X
|
[3] |
BARTNICKI P, KOWALCZYK M, RYSZ J. The influence of the pleiotropic action of erythropoietin and its derivatives on nephroprotection[J]. Med Sci Monit, 2013, 19: 599-605. doi: 10.12659/MSM.889023
|
[4] |
KWAK J, KIM J H, JANG H N, et al. Erythropoietin ameliorates ischemia/reperfusion-induced acute kidney injury via inflammasome suppression in mice[J]. Int J Mol Sci, 2020, 21(10): E3453. doi: 10.3390/ijms21103453
|
[5] |
COLDEWEY S M, KHAN A I, KAPOOR A, et al. Erythropoietin attenuates acute kidney dysfunction in murine experimental Sepsis by activation of the β-common receptor[J]. Kidney Int, 2013, 84(3): 482-490. doi: 10.1038/ki.2013.118
|
[6] |
OH S W, CHIN H J, CHAE, et al. Erythropoietin improves long-term outcomes in patients with acute kidney injury after coronary artery bypass grafting[J]. J Korean Med Sci, 2012, 27(5): 506-511. doi: 10.3346/jkms.2012.27.5.506
|
[7] |
TASANARONG A, DUANGCHANA S, SUMRANSURP S, et al. Prophylaxis with erythropoietin versus placebo reduces acute kidney injury and neutrophil gelatinase-associated lipocalin in patients undergoing cardiac surgery: a randomized, double-blind controlled trial[J]. BMC Nephrol, 2013, 14: 136. doi: 10.1186/1471-2369-14-136
|
[8] |
PENG B, KONG G C, YANG C, et al. Erythropoietin and its derivatives: from tissue protection to immune regulation[J]. Cell Death Dis, 2020, 11(2): 79. doi: 10.1038/s41419-020-2276-8
|
[9] |
WU Y Y, YANG B. Erythropoietin receptor/β common receptor: a shining light on acute kidney injury induced by ischemia-reperfusion[J]. Front Immunol, 2021, 12: 697796. doi: 10.3389/fimmu.2021.697796
|
[10] |
BROXMEYER H E. Erythropoietin: multiple targets, actions, and modifying influences for biological and clinical consideration[J]. J Exp Med, 2013, 210(2): 205-208. doi: 10.1084/jem.20122760
|
[11] |
STOYANOFF T R, RODRÍGUEZ J P, TODARO J S, et al. Erythropoietin attenuates LPS-induced microvascular damage in a murine model of septic acute kidney injury[J]. Biomedecine Pharmacother, 2018, 107: 1046-1055. doi: 10.1016/j.biopha.2018.08.087
|
[12] |
STOYANOFF T R, TODARO J S, AGUIRRE M V, et al. Amelioration of lipopolysaccharide-induced acute kidney injury by erythropoietin: involvement of mitochondria-regulated apoptosis[J]. Toxicology, 2014, 318: 13-21. doi: 10.1016/j.tox.2014.01.011
|
[13] |
BRINES M, GRASSO G, FIORDALISO F, et al. Erythropoietin mediates tissue protection through an erythropoietin and common beta-subunit heteroreceptor[J]. Proc Natl Acad Sci USA, 2004, 101(41): 14907-14912. doi: 10.1073/pnas.0406491101
|
[14] |
BRINES M, CERAMI A. Erythropoietin-mediated tissue protection: reducing collateral damage from the primary injury response[J]. J Intern Med, 2008, 264(5): 405-432. doi: 10.1111/j.1365-2796.2008.02024.x
|
[15] |
TÖGEL F E, AHLSTROM J D, YANG Y, et al. Carbamylated erythropoietin outperforms erythropoietin in the treatment of AKI-on-CKD and other AKI models[J]. J Am Soc Nephrol, 2016, 27(11): 3394-3404. doi: 10.1681/ASN.2015091059
|
[16] |
GOBE G C, BENNETT N C, WEST M, et al. Increased progression to kidney fibrosis after erythropoietin is used as a treatment for acute kidney injury[J]. Am J Physiol Renal Physiol, 2014, 306(6): F681-F692. doi: 10.1152/ajprenal.00241.2013
|
[17] |
DARDASHTI A, EDEROTH P, ALGOTSSON L, et al. Erythropoietin and protection of renal function in cardiac surgery (the EPRICS Trial)[J]. Anesthesiology, 2014, 121(3): 582-590. doi: 10.1097/ALN.0000000000000321
|
[18] |
AYDIN Z, MALLAT M J, SCHAAPHERDER A F, et al. Randomized trial of short-course high-dose erythropoietin in donation after cardiac death kidney transplant recipients[J]. Am J Transplant, 2012, 12(7): 1793-1800. doi: 10.1111/j.1600-6143.2012.04019.x
|
[19] |
BRINES M, PATEL N S, VILLA P, et al. Nonerythropoietic, tissue-protective peptides derived from the tertiary structure of erythropoietin[J]. Proc Natl Acad Sci USA, 2008, 105(31): 10925-10930. doi: 10.1073/pnas.0805594105
|
[20] |
QU Y, SUN Q, SONG X X, et al. Helix B surface peptide reduces Sepsis-induced kidney injury via PI3K/Akt pathway[J]. Nephrology (Carlton), 2020, 25(7): 527-534. doi: 10.1111/nep.13683
|
[21] |
YANG C, ZHAO T, LIN M, et al. Helix B surface peptide administered after insult of ischemia reperfusion improved renal function, structure and apoptosis through beta common receptor/erythropoietin receptor and PI3K/Akt pathway in a murine model[J]. Exp Biol Med (Maywood), 2013, 238(1): 111-119. doi: 10.1258/ebm.2012.012185
|
[22] |
YANG C, XU Z L, ZHAO Z T, et al. A novel proteolysis-resistant cyclic helix B peptide ameliorates kidney ischemia reperfusion injury[J]. Biochim Biophys Acta, 2014, 1842(11): 2306-2317. doi: 10.1016/j.bbadis.2014.09.001
|
[23] |
YANG C, ZHANG Y, WANG J, et al. A novel cyclic helix B peptide inhibits dendritic cell maturation during amelioration of acute kidney graft rejection through Jak-2/STAT3/SOCS1[J]. Cell Death Dis, 2015, 6: e1993. doi: 10.1038/cddis.2015.338
|
[24] |
YANG C, CAO Y, ZHANG Y, et al. Cyclic helix B peptide inhibits ischemia reperfusion-induced renal fibrosis via the PI3K/Akt/FoxO3a pathway[J]. J Transl Med, 2015, 13: 355. doi: 10.1186/s12967-015-0699-2
|
[25] |
ZENG Y G, ZHENG L, YANG Z R, et al. Protective effects of cyclic helix B peptide on aristolochic acid induced acute kidney injury[J]. Biomedecine Pharmacother, 2017, 94: 1167-1175. doi: 10.1016/j.biopha.2017.07.131
|
[26] |
ZHANG Y F, WU Y Y, WANG W, et al. Long-term protection of CHBP against combinational renal injury induced by both ischemia-reperfusion and cyclosporine A in mice[J]. Front Immunol, 2021, 12: 697751. doi: 10.3389/fimmu.2021.697751
|
[27] |
梅艳, 洪权, 马倩, 等. 氨甲酰化促红细胞生成素对慢性肾衰竭合并急性肾损伤大鼠肾脏的保护作用[J]. 中华肾病研究电子杂志, 2018, 7(3): 122-125. doi: 10.3877/cma.j.issn.2095-3216.2018.03.006
|
[28] |
IMAMURA R, ISAKA Y, SANDOVAL R M, et al. A nonerythropoietic derivative of erythropoietin inhibits tubulointerstitial fibrosis in remnant kidney[J]. Clin Exp Nephrol, 2012, 16(6): 852-862. doi: 10.1007/s10157-012-0647-x
|
[29] |
COLLINO M, THIEMERMANN C, CERAMI A, et al. Flipping the molecular switch for innate protection and repair of tissues: long-lasting effects of a non-erythropoietic small peptide engineered from erythropoietin[J]. Pharmacol Ther, 2015, 151: 32-40. doi: 10.1016/j.pharmthera.2015.02.005
|
[30] |
BREGGIA A C, WOJCHOWSKI D M, HIMMELFARB J. JAK2/Y343/STAT5 signaling axis is required for erythropoietin-mediated protection against ischemic injury in primary renal tubular epithelial cells[J]. Am J Physiol Renal Physiol, 2008, 295(6): F1689-F1695. doi: 10.1152/ajprenal.90333.2008
|
[31] |
LIU T Q, FANG Y, LIU S P, et al. Limb ischemic preconditioning protects against contrast-induced acute kidney injury in rats via phosphorylation of GSK-3β[J]. Free Radic Biol Med, 2015, 81: 170-182. doi: 10.1016/j.freeradbiomed.2014.10.509
|
[32] |
王锋, 柴璐, 范亚平, 等. 促红细胞生成素衍生肽对顺铂诱导急性肾损伤的保护作用[J]. 医学研究杂志, 2018, 47(8): 34-38, 77. https://www.cnki.com.cn/Article/CJFDTOTAL-YXYZ201808011.htm
|
[33] |
LU M L, WANG P, QIAO Y J, et al. GSK3β-mediated Keap1-independent regulation of Nrf2 antioxidant response: a molecular rheostat of acute kidney injury to chronic kidney disease transition[J]. Redox Biol, 2019, 26: 101275. doi: 10.1016/j.redox.2019.101275
|
[34] |
YAN L, ZHANG H, GAO S, et al. EPO derivative ARA290 attenuates early renal allograft injury in rats by targeting NF-κB pathway[J]. Transplant Proc, 2018, 50(5): 1575-1582. doi: 10.1016/j.transproceed.2018.03.015
|
[35] |
MA H J, GUO X Z, CUI S C, et al. Dephosphorylation of AMP-activated protein kinase exacerbates ischemia/reperfusion-induced acute kidney injury via mitochondrial dysfunction[J]. Kidney Int, 2022, 101(2): 315-330. doi: 10.1016/j.kint.2021.10.028
|
[36] |
YUE J C, LÓPEZ J M. Understanding MAPK signaling pathways in apoptosis[J]. Int J Mol Sci, 2020, 21(7): 2346. doi: 10.3390/ijms21072346
|
[37] |
ZHANG J H, ZHAO D Q, NA N, et al. Renoprotective effect of erythropoietin via modulation of the STAT6/MAPK/NF-κB pathway in ischemia/reperfusion injury after renal transplantation[J]. Int J Mol Med, 2018, 41(1): 25-32.
|
[38] |
SHIN H J, KO E, JUN I, et al. Effects of perioperative erythropoietin administration on acute kidney injury and red blood cell transfusion in patients undergoing cardiac surgery: a systematic review and meta-analysis[J]. Medicine (Baltimore), 2022, 101(9): e28920. doi: 10.1097/MD.0000000000028920
|
[39] |
VAN VELZEN M, HEIJ L, NIESTERS M, et al. ARA 290 for treatment of small fiber neuropathy in sarcoidosis[J]. Expert Opin Investig Drugs, 2014, 23(4): 541-550. doi: 10.1517/13543784.2014.892072
|
[40] |
BRINES M, DUNNE A N, VAN VELZEN M, et al. ARA 290, a nonerythropoietic peptide engineered from erythropoietin, improves metabolic control and neuropathic symptoms in patients with type 2 diabetes[J]. Mol Med, 2015, 20: 658-666.
|