LIAO Zhixiao, DENG Yueyang, ZHU Jinli, CHEN Hanrui, XU Lingling, ZHAI Lin, FENG Jingwen, ZHOU Jingxu. Construction of a mortality competition risk model for patients with early-onset colorectal cancer[J]. Journal of Clinical Medicine in Practice, 2022, 26(22): 72-76. DOI: 10.7619/jcmp.20222444
Citation: LIAO Zhixiao, DENG Yueyang, ZHU Jinli, CHEN Hanrui, XU Lingling, ZHAI Lin, FENG Jingwen, ZHOU Jingxu. Construction of a mortality competition risk model for patients with early-onset colorectal cancer[J]. Journal of Clinical Medicine in Practice, 2022, 26(22): 72-76. DOI: 10.7619/jcmp.20222444

Construction of a mortality competition risk model for patients with early-onset colorectal cancer

More Information
  • Received Date: August 08, 2022
  • Available Online: December 01, 2022
  • Objective 

    To analyze the risk factors of cancer-specific mortality (CSM) in patients with early-onset colorectal cancer (EOCRC), and to establish and verify the mortality risk prediction model.

    Methods 

    A total of 14 554 patients pathologically diagnosed with EOCRC from 2010 to 2019 were included in the Surveillance, Epidemiology, and End Results (SEER) database and randomly divided into a training set with 10 188 patients and a validation set with 4 366 patients. Fine-Gray competitive risk model was used for univariate and multivariate analysis, and influencing factors of CSM rate in patients with EOCRC were screened. The prognostic model was established, the C index and calibration curve were used for internal verification, and the column graph was drawn.

    Results 

    Pathological type, N stage, M stage, primary lesion surgery, regional lymph node surgery, distant metastasis surgery and carcinoembryonic antigen (CEA) were independent factors influencing the CSM rate of EOCRC patients (P < 0.05). The C-index of the line graph model was close to 0.8, and the calibration curves fitted the reference line.

    Conclusion 

    The death competition risk model of EOCRC patients established in this study has good predictive value and can be used in clinical practice.

  • [1]
    MURPHY N, CAMPBELL P T, GUNTER M J. Unraveling the etiology of early-onset colorectal cancer[J]. J Natl Cancer Inst, 2021, 113(5): 505-506. doi: 10.1093/jnci/djaa165
    [2]
    GOGENUR I, QVORTRUP C. Colorectal cancer screening in Europe: what are the next steps[J]. Lancet Oncol, 2021, 22(7): 898-899. doi: 10.1016/S1470-2045(21)00276-X
    [3]
    CHEN Y L, CHEN Z X, HUANG J N, et al. Clinicopathological and molecular characteristics of early-onset vs late-onset colorectal cancer according to tumor location[J]. Int J Clin Oncol, 2022, 27(4): 749-755. doi: 10.1007/s10147-021-02101-9
    [4]
    HIMBERT C, FIGUEIREDO J C, SHIBATA D, et al. Clinical characteristics and outcomes of colorectal cancer in the ColoCare study: differences by age of onset[J]. Cancers (Basel), 2021, 13(15): 3817. doi: 10.3390/cancers13153817
    [5]
    SHEN J, WU Y L, MO M, et al. Risk factors associated with early-onset colorectal neoplasm in Chinese youth: a prospective population-based study[J]. Front Oncol, 2021, 11: 702322. doi: 10.3389/fonc.2021.702322
    [6]
    WU W T, YANG J, LI D N, et al. Competitive risk analysis of prognosis in patients with cecum cancer: a population-based study[J]. Cancer Control, 2021, 28: 1073274821989316.
    [7]
    DE GLAS N A, KIDERLEN M, VANDENBROUCKE J P, et al. Performing survival analyses in the presence of competing risks: a clinical example in older breast cancer patients[J]. J Natl Cancer Inst, 2016, 108(5): djv366. doi: 10.1093/jnci/djv366
    [8]
    王肖飞, 张国庆, 吴彬, 等. 食管神经内分泌癌患者原因别死亡竞争风险模型的建立与评价[J]. 临床肿瘤学杂志, 2019, 24(3): 231-236. doi: 10.3969/j.issn.1009-0460.2019.03.008
    [9]
    李海彬, 李霞, 王安心, 等. 竞争风险模型及其在Stata软件实现[J]. 中国卫生统计, 2016, 33(5): 889-891, 895. https://www.cnki.com.cn/Article/CJFDTOTAL-ZGWT201605050.htm
    [10]
    李秋萍, 谷鸿秋, 王俊峰. 临床预测模型: TRIPOD报告规范解读: 以心血管疾病预测模型QRISK3为例(上)[J]. 中国循证心血管医学杂志, 2020, 12(7): 778-782, 793. doi: 10.3969/j.issn.1674-4055.2020.07.03
    [11]
    MCCLELLAND P H T, LIU T M, OZUNER G. Early-onset colorectal cancer in patients under 50 years of age: demographics, disease characteristics, and survival[J]. Clin Colorectal Cancer, 2022, 21(2): e135-e144. doi: 10.1016/j.clcc.2021.11.003
    [12]
    FONTANA E, MEYERS J, SOBRERO A, et al. Early-onset colorectal adenocarcinoma in the IDEA database: treatment adherence, toxicities, and outcomes with 3 and 6 months of adjuvant fluoropyrimidine and oxaliplatin[J]. J Clin Oncol, 2021, 39(36): 4009-4019. doi: 10.1200/JCO.21.02008
    [13]
    CHENG E, BLACKBURN H N, NG K, et al. Analysis of survival among adults with early-onset colorectal cancer in the national cancer database[J]. JAMA Netw Open, 2021, 4(6): e2112539. doi: 10.1001/jamanetworkopen.2021.12539
    [14]
    WU J X, LU L B, CHEN H, et al. Prognostic nomogram to predict the overall survival of patients with early-onset colorectal cancer: a population-based analysis[J]. Int J Colorectal Dis, 2021, 36(9): 1981-1993. doi: 10.1007/s00384-021-03992-w
    [15]
    中国临床肿瘤学会指南工作委员会组织. 中国临床肿瘤学会(CSCO)结直肠癌诊疗指南-2021[M]. 北京: 人民卫生出版社, 2021: 5-10.
    [16]
    PROVENZALE D, NESS R M, LLOR X, et al. NCCN guidelines insights: colorectal cancer screening, version 2. 2020[J]. J Natl Compr Canc Netw, 2020, 18(10): 1312-1320. doi: 10.6004/jnccn.2020.0048
    [17]
    REACCT COLLABORATIVE, ZABOROWSKI A M, ABDILE A, et al. Characteristics of early-onset vs late-onset colorectal cancer: a review[J]. JAMA Surg, 2021, 156(9): 865-874. doi: 10.1001/jamasurg.2021.2380
    [18]
    贾沛杰. 血清CA724、CA199联合CEA诊断结直肠癌的临床价值[J]. 中国肛肠病杂志, 2022, 42(5): 14-16. https://www.cnki.com.cn/Article/CJFDTOTAL-GCBZ202205006.htm
    [19]
    曾凡鹏, 路庆艳, 李青. 术前HPR、LCR和CEA水平在结直肠癌中的临床价值分析[J]. 国际检验医学杂志, 2022, 43(7): 818-822. doi: 10.3969/j.issn.1673-4130.2022.07.011
    [20]
    KOLARICH A, GEORGE T J Jr, HUGHES S J, et al. Rectal cancer patients younger than 50 years lack a survival benefit from NCCN guideline-directed treatment for stage II and III disease[J]. Cancer, 2018, 124(17): 3510-3519. doi: 10.1002/cncr.31527
    [21]
    CERCEK A, CHATILA W K, YAEGER R, et al. A comprehensive comparison of early-onset and average-onset colorectal cancers[J]. J Natl Cancer Inst, 2021, 113(12): 1683-1692. doi: 10.1093/jnci/djab124
    [22]
    WILLAUER A N, LIU Y S, PEREIRA A A L, et al. Clinical and molecular characterization of early-onset colorectal cancer[J]. Cancer, 2019, 125(12): 2002-2010. doi: 10.1002/cncr.31994
    [23]
    YAMASHITA R, LONG J, LONGACRE T, et al. Deep learning model for the prediction of microsatellite instability in colorectal cancer: a diagnostic study[J]. Lancet Oncol, 2021, 22(1): 132-141. doi: 10.1016/S1470-2045(20)30535-0
    [24]
    CONNELL L C, MOTA J M, BRAGHIROLI M I, et al. The rising incidence of younger patients with colorectal cancer: questions about screening, biology, and treatment[J]. Curr Treat Options Oncol, 2017, 18(4): 23. doi: 10.1007/s11864-017-0463-3
    [25]
    朱旭, 陈书, 魏歆然, 等. 基于Fine-Gray竞争风险模型的青年胃癌患者预后影响因素研究[J]. 第二军医大学学报, 2021, 42(10): 1140-1147. https://www.cnki.com.cn/Article/CJFDTOTAL-DEJD202110008.htm
  • Related Articles

    [1]SHI Qianqian, LIU Jingjing. Risk factor and construction of nomogram prediction model for pertussis in children[J]. Journal of Clinical Medicine in Practice, 2025, 29(6): 56-61. DOI: 10.7619/jcmp.20244333
    [2]WANG Wang, ZHAO Han. Construction of a nomogram prediction model for catheter-related bloodstream infections in hemodialysis patients with chronic renal failure[J]. Journal of Clinical Medicine in Practice, 2024, 28(18): 95-100. DOI: 10.7619/jcmp.20240464
    [3]REN Weiwei, WANG Chao, MENG Junhua, XU Suhong. Establishment and validation of an individualized risk prediction nomogram model for gestational diabetes mellitus in pregnant women with hypothyroidism[J]. Journal of Clinical Medicine in Practice, 2024, 28(16): 93-97. DOI: 10.7619/jcmp.20234265
    [4]ZHANG Nianfang, WEI Cui, ZHAO Xuepiao. Construction of risk prediction model of gestational diabetes mellitus patients complicated with gestational hypertension[J]. Journal of Clinical Medicine in Practice, 2024, 28(15): 64-69, 75. DOI: 10.7619/jcmp.20234003
    [5]WANG Huili, LI Huijuan, LU Yan, QIN Xiuyu, CHEN Dandan, XU Yun. Risk factors of intraoperative hypothermia in patients undergoing radical thyroidectomy under laparoscopy and the construction of nomogram model[J]. Journal of Clinical Medicine in Practice, 2024, 28(4): 29-33. DOI: 10.7619/jcmp.20232740
    [6]YAN Chun, SUN Dafeng, ZHANG Weiya. Risk factors of surgical site infection after spinal tuberculosis surgery and establishment of a Nomogram model[J]. Journal of Clinical Medicine in Practice, 2023, 27(21): 25-31. DOI: 10.7619/jcmp.20230832
    [7]SONG Feng, FANG Canjun, HU Jing, CHEN Yi. Risk factors of preoperative deep venous thrombosis in young and middle-aged patients with hip fracture and construction of a Nomogram predictive model[J]. Journal of Clinical Medicine in Practice, 2023, 27(12): 32-37. DOI: 10.7619/jcmp.20230579
    [8]DONG Yanping, WANG Jiemin, WANG Yujin, REN Yali, DONG Yucheng, YONG Yanjun, SU Xuandi, WANG Jixiang, SU Nan, WANG Fuli, XIA Duosheng. Construction and evaluation of Nomogram prediction model for postoperative recurrence of pterygium[J]. Journal of Clinical Medicine in Practice, 2022, 26(7): 52-56. DOI: 10.7619/jcmp.20214610
    [9]ZHOU Lanmei, JIANG Lijun, ZHU Fengxia, ZHAO Xuemei, JIN Yanting. Analysis in risk factors of respiratory tract infectionin preschool children and construction of nomogram prediction model[J]. Journal of Clinical Medicine in Practice, 2021, 25(14): 9-14. DOI: 10.7619/jcmp.20211520
    [10]ZHANG Zhen, ZHANG Hengzhu, LI Yuping, YAN Zhengcun, DONG Lun, WANG Xiaodong, WANG Xingdong. Relationship between systemic inflammation response index and symptomatic cerebral vasospasm after aneurismal subarachnoid hemorrhage as well as construction of a Nomogram predictive model[J]. Journal of Clinical Medicine in Practice, 2020, 24(10): 36-40. DOI: 10.7619/jcmp.202010009

Catalog

    Article views (225) PDF downloads (21) Cited by()

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return