Citation: | LI Qian, LI Xiaojing, LI Xinyi. Research progress on secreted protein acidic and rich in cysteine in skin fibrosis disease[J]. Journal of Clinical Medicine in Practice, 2023, 27(6): 137-140. DOI: 10.7619/jcmp.20222597 |
The main pathological feature of skin fibrosis disease is the excessive deposition of extracellular matrix (ECM) dominated by collagen in the dermis, which can lead to skin thickening or hypertrophic scar. Typical fibrotic lesions of the skin include scleroderma, hypertrophic scars and keloids. Studies found that secreted protein acidic and rich in cysteine (SPARC) is overexpressed in various fibrotic tissues. SPARC is a typical calcium binding matrix protein that can regulate interactions between cells and ECM, and affect responses of cells to growth factors. This study reviewed the research progress of SPARC in skin fibrosis so as to provide evidence for SPARC as a potential target for alleviating fibrosis.
[1] |
ROSSET E M, BRADSHAW A D. SPARC/osteonectin in mineralized tissue[J]. Matrix Biol, 2016(52/53/54): 78-87.
|
[2] |
BRADSHAW A D. The role of SPARC in extracellular matrix assembly[J]. J Cell Commun Signal, 2009, 3(3): 239-246.
|
[3] |
WANG L Y, ZHANG Y T, DU L Q, et al. The effect of SPARC on the proliferation and migration of limbal epithelial stem cells during the corneal epithelial wound healing[J]. Stem Cells Dev, 2021, 30(6): 301-308. doi: 10.1089/scd.2020.0196
|
[4] |
WONG S L I, SUKKAR M B. The SPARC protein: an overview of its role in lung cancer and pulmonary fibrosis and its potential role in chronic airways disease[J]. Br J Pharmacol, 2017, 174(1): 3-14. doi: 10.1111/bph.13653
|
[5] |
TROMBETTA-ESILVA J, BRADSHAW A D. The function of SPARC as a mediator of fibrosis[J]. Open Rheumatol J, 2012, 6: 146-155. doi: 10.2174/1874312901206010146
|
[6] |
OH D J, KANG M H, OOI Y H, et al. Overexpression of SPARC in human trabecular meshwork increases intraocular pressure and alters extracellular matrix[J]. Invest Ophthalmol Vis Sci, 2013, 54(5): 3309-3319. doi: 10.1167/iovs.12-11362
|
[7] |
HARRIS B S, ZHANG Y H, CARD L, et al. SPARC regulates collagen interaction with cardiac fibroblast cell surfaces[J]. Am J Physiol Heart Circ Physiol, 2011, 301(3): H841-H847. doi: 10.1152/ajpheart.01247.2010
|
[8] |
RENTZ T J, POOBALARAHI F, BORNSTEIN P, et al. SPARC regulates processing of procollagen I and collagen fibrillogenesis in dermal fibroblasts[J]. J Biol Chem, 2007, 282(30): 22062-22071. doi: 10.1074/jbc.M700167200
|
[9] |
CARAFOLI F, BIHAN D, STATHOPOULOS S, et al. Crystallographic insight into collagen recognition by discoidin domain receptor 2[J]. Structure, 2009, 17(12): 1573-1581. doi: 10.1016/j.str.2009.10.012
|
[10] |
RILEY H J, BRADSHAW A D. The influence of the extracellular matrix in inflammation: findings from the SPARC-null mouse[J]. Anat Rec (Hoboken), 2020, 303(6): 1624-1629. doi: 10.1002/ar.24133
|
[11] |
FAN J W, ZHANG X, JIANG Y P, et al. SPARC knockdown attenuated TGF-β1-induced fibrotic effects through Smad2/3 pathways in human pterygium fibroblasts[J]. Arch Biochem Biophys, 2021, 713: 109049. doi: 10.1016/j.abb.2021.109049
|
[12] |
BRADSHAW A D, GRAVES D C, MOTAMED K, et al. SPARC-null mice exhibit increased adiposity without significant differences in overall body weight[J]. Proc Natl Acad Sci USA, 2003, 100(10): 6045-6050. doi: 10.1073/pnas.1030790100
|
[13] |
ZHOU X D, TAN F K, GUO X J, et al. Attenuation of collagen production with small interfering RNA of SPARC in cultured fibroblasts from the skin of patients with scleroderma[J]. Arthritis Rheum, 2006, 54(8): 2626-2631. doi: 10.1002/art.21973
|
[14] |
WANG J C, SONNYLAL S, ARNETT F C, et al. Attenuation of expression of extracellular matrix genes with siRNAs to Sparc and Ctgf in skin fibroblasts of CTGF transgenic mice[J]. Int J Immunopathol Pharmacol, 2011, 24(3): 595-601. doi: 10.1177/039463201102400305
|
[15] |
WANG J C, LAI S, GUO X J, et al. Attenuation of fibrosis in vitro and in vivo with SPARC siRNA[J]. Arthritis Res Ther, 2010, 12(2): R60. doi: 10.1186/ar2973
|
[16] |
ZHOU X D, TAN F K, GUO X J, et al. Small interfering RNA inhibition of SPARC attenuates the profibrotic effect of transforming growth factor beta1 in cultured normal human fibroblasts[J]. Arthritis Rheum, 2005, 52(1): 257-261. doi: 10.1002/art.20785
|
[17] |
CARVALHEIRO T, MALVAR FERNÁNDEZ B, OTTRIA A, et al. Extracellular SPARC cooperates with TGF-β signalling to induce pro-fibrotic activation of systemic sclerosis patient dermal fibroblasts[J]. Rheumatology (Oxford), 2020, 59(9): 2258-2263. doi: 10.1093/rheumatology/kez583
|
[18] |
ANTIGNANI A. How do Bax and Bak lead to permeabilization of the outer mitochondrial membrane?[J]. Curr Opin Cell Biol, 2006, 18(6): 685-689. doi: 10.1016/j.ceb.2006.10.004
|
[19] |
LI Y, YANG L L, ZHENG Z, et al. MRP1 knockdown down-regulates the deposition of collagen and leads to a reduced hypertrophic scar fibrosis[J]. J Mol Hist, 2015, 46(4): 357-364.
|
[20] |
XIAO Z B, QU G F. Effects of botulinum toxin type a on collagen deposition in hypertrophic scars[J]. Molecules, 2012, 17(2): 2169-2177. doi: 10.3390/molecules17022169
|
[21] |
刘超华, 李小静, 宁金龙, 等. 富含半胱氨酸的酸性分泌糖蛋白在病理性瘢痕中的表达及其意义[J]. 组织工程与重建外科杂志, 2010, 6(1): 17-20. https://www.cnki.com.cn/Article/CJFDTOTAL-ZZCW201001009.htm
|
[22] |
朱晓璇, 李心怡, 王佳妮, 等. Sparc对瘢痕疙瘩成纤维细胞以及正常人皮肤成纤维细胞增殖凋亡及Ⅰ型、Ⅲ型胶原分泌影响的研究[J]. 安徽医科大学学报, 2021, 56(8): 1222-1225. https://www.cnki.com.cn/Article/CJFDTOTAL-YIKE202108010.htm
|
[23] |
王春, 李小静, 刘超华, 等. SPARC对增生性瘢痕成纤维细胞Ⅰ型胶原蛋白mRNA表达的影响[J]. 山东医药, 2009, 49(50): 110-111. doi: 10.3969/j.issn.1002-266X.2009.50.055
|
[24] |
WENG X J, LI X J, LI X Y. Promotion of fibrosis in skin scar tissue by secreted protein acidic which is rich in cysteine proteins[J]. J Biomater Tiss Eng, 2018, 8(11): 1573-1579. doi: 10.1166/jbt.2018.1907
|
[25] |
LIANG P F, LV C L, JIANG B M, et al. MicroRNA profiling in denatured dermis of deep burn patients[J]. Burns, 2012, 38(4): 534-540. doi: 10.1016/j.burns.2011.10.014
|
[26] |
WANG L Y, ZHANG Y T, DU L Q, et al. The effect of SPARC on the proliferation and migration of limbal epithelial stem cells during the corneal epithelial wound healing[J]. Stem Cells Dev, 2021, 30(6): 301-308. doi: 10.1089/scd.2020.0196
|