Citation: | HU Hao, LU Hua. Research progress on application of finite element analysis in internal fixation of distal femoral fractures[J]. Journal of Clinical Medicine in Practice, 2023, 27(6): 145-148. DOI: 10.7619/jcmp.20223764 |
Most distal femoral fractures are comminuted and unstable, often involving the articular surface, and internal fixation is the preferred treatment for distal femoral fractures. Finite element analysis method can be used to study the reconstruction and simulation of the distal femur, explore the injury mechanism of fracture, analyze the biomechanical characteristics of different internal fixations, and guide the improvement of internal fixation methods and materials. This study reviewed the finite element modeling of distal femur and clinical application value from the perspective of finite element analysis.
[1] |
GWATHMEY F W Jr, JONES-QUAIDOO S M, KAHLER D, et al. Distal femoral fractures: current concepts[J]. J Am Acad Orthop Surg, 2010, 18(10): 597-607. doi: 10.5435/00124635-201010000-00003
|
[2] |
马信龙, 马剑雄, 徐卫国, 等. 骨科生物力学研究的测量方法学专家共识[J]. 中国骨质疏松杂志, 2014, 20(9): 1039-1054. https://www.cnki.com.cn/Article/CJFDTOTAL-ZGZS201409004.htm
|
[3] |
KLEIN K F, HU J W, REED M P, et al. Validation of a parametric finite element human femur model[J]. Traffic Inj Prev, 2017, 18(4): 420-426. doi: 10.1080/15389588.2016.1269172
|
[4] |
BREKELMANS W A, POORT H W, SLOOFF T J. A new method to analyse the mechanical behaviour of skeletal parts[J]. Acta Orthop Scand, 1972, 43(5): 301-317. doi: 10.3109/17453677208998949
|
[5] |
徐振炀, 胡永成, 叶金铎, 等. 股骨三维有限元模型的建模方法[J]. 天津理工大学学报, 2015, 31(5): 51-56. https://www.cnki.com.cn/Article/CJFDTOTAL-TEAR201505011.htm
|
[6] |
HAMANDI F, GOSWAMI T. Macrodamage accumulation model for a human femur[J]. Appl Bionics Biomech, 2017, 2017: 1-19.
|
[7] |
REN D, LIU Y J, ZHANG X C, et al. The evaluation of the role of medial collateral ligament maintaining knee stability by a finite element analysis[J]. J Orthop Surg Res, 2017, 12(1): 1-10. doi: 10.1186/s13018-016-0501-z
|
[8] |
邹诚实, 李开成, 张兆国, 等. 股骨远端骨折髓内钉与锁定钢板内固定方式的有限元分析[J]. 浙江医学, 2016, 38(18): 1507-1509, 1518. https://www.cnki.com.cn/Article/CJFDTOTAL-ZJYE201618014.htm
|
[9] |
GHOUCHANI A, ROUHI G, EBRAHIMZADEH M H. Post-operative fracture risk assessment following tumor curettage in the distal femur: a hybrid in vitro and in silico biomechanical approach[J]. Sci Rep, 2020, 10(1): 21319. doi: 10.1038/s41598-020-78188-3
|
[10] |
吴慧敏, 陈彦胜, 唐华, 等. 建立股骨远端C3型骨折有限元模型并提出股骨远端"双柱理论"[J]. 临床骨科杂志, 2018, 21(5): 631-635. https://www.cnki.com.cn/Article/CJFDTOTAL-LCGK201805052.htm
|
[11] |
KLUESS D, SOODMAND E, LORENZ A, et al. A round-robin finite element analysis of human femur mechanics between seven participating laboratories with experimental validation[J]. Comput Methods Biomech Biomed Eng, 2019, 22(12): 1020-1031. doi: 10.1080/10255842.2019.1615481
|
[12] |
HAKE M E, DAVIS M E, PERDUE A M, et al. Modern implant options for the treatment of distal femur fractures[J]. J Am Acad Orthop Surg, 2019, 27(19): e867-e875. doi: 10.5435/JAAOS-D-17-00706
|
[13] |
ZHANG W, LI J, ZHANG H, et al. Biomechanical assessment of single LISS versus double-plate osteosynthesis in the AO type 33-C2 fractures: a finite element analysis[J]. Injury, 2018, 49(12): 2142-2146. doi: 10.1016/j.injury.2018.10.011
|
[14] |
HERRERA A, ALBAREDA J, GABARRE S, et al. Comparative analysis of the biomechanical behavior of anterograde/retrograde nailing in supracondylar femoral fractures[J]. Injury, 2020, 51: S80-S88.
|
[15] |
CHEN S H, TAI C L, YU T C, et al. Modified fixations for distal femur fractures following total knee arthroplasty: a biomechanical and clinical relevance study[J]. Knee Surg Sports Traumatol Arthrosc, 2016, 24(10): 3262-3271. doi: 10.1007/s00167-016-4107-0
|
[16] |
ZHANG J, WEI Y, LI G D, et al. Interfragmentary lag screw and locking plate combination in simple distal femoral fractures: a finite element analysis[J]. Acta Orthop Traumatol Turc, 2021, 55(1): 9-15.
|
[17] |
许铎, 孙锐坚, 王天宇, 等. 基于有限元生物力学分析的股骨远端A型骨折探索与再思考[J]. 中华外科杂志, 2019, 57(11): 812-817.
|
[18] |
ALBAREDA-ALBAREDA J, GABARRE-RASO S, ROSELL-PRADAS J, et al. Biomechanical behavior of retrograde intramedullary nails in distal femoral fractures[J]. Injury, 2021, 52(Suppl 4): S76-S86.
|
[19] |
GEE A, BOUGHERARA H, SCHEMITSCH EH, et al. Biomechanical design using in-vitro finite element modeling of distal femur fracture plates made from semi-rigid materials versus traditional metals for post-operative toe-touch weight-bearing[J]. Med Eng Phys, 2021, 87: 95-103.
|
[20] |
EPARI D R, GURUNG R, HOFMANN-FLIRI L, et al. Biphasic plating improves the mechanical performance of locked plating for distal femur fractures[J]. J Biomech, 2021, 115: 110192.
|
[21] |
SHAMS S F, MEHDIZADEH A, MOVAHEDI M M, et al. The comparison of stress and strain between custom-designed bone plates (CDBP) and locking compression plate (LCP) for distal femur fracture[J]. Eur J Orthop Surg Traumatol, 2023, 33(1): 191-197.
|
[22] |
CHEN X Z. Parametric design of patient-specific fixation plates for distal femur fractures[J]. Proc Inst Mech Eng H, 2018, 232(9): 901-911.
|
[23] |
SARWAR A, GEE A, BOUGHERARA H, et al. Biomechanical optimization of the far cortical locking technique for early healing of distal femur fractures[J]. Med Eng Phys, 2021, 89: 63-72.
|
[24] |
SAMIEZADEH A, MCLACHLIN S, NG M, et al. Modeling attachment and compressive loading of locking and non-locking plate fixation: a finite element investigation of a supracondylar femur fracture model[J]. Comput Methods Biomech Biomed Eng, 2022, 25(14): 1629-1636.
|