Citation: | WANG Yiren, LIU Aiai, ZHAN Xiang, LUO Yan, ZHOU Ping. Screening of genetic markers for diagnosis of nasopharyngeal carcinoma based on machine learning algorithm[J]. Journal of Clinical Medicine in Practice, 2023, 27(7): 6-11. DOI: 10.7619/jcmp.20230091 |
To screen genetic markers for diagnosis of nasopharyngeal carcinoma (NPC) by the Least Absolute Shrinkage and Selection Operator (LASSO) and Support Vector Machine Recursive Feature Elimination (SVM-RFE) algorithms.
Microarray data sets including GSE53819 and GSE13597 of gene expression were downloaded from the GEO database, and transcriptome sequencing data sets including GTEx database and ICGC-NPC database were downloaded as training set and verification set. Differentially expressed genes (DEGs) related to NPC were identified through gene expression differential analysis. Subsequently, LASSO regression and SVM-RFE were used to screen diagnostic feature genes for NPC in three data sets. Finally, an external validation set was used to evaluate the predictive performance of these diagnostic genes by the area under the curve (AUC) of the receiver operating characteristic (ROC) curve.
A total of 582 DEGs related to NPC were identified, including 156 high expression DEGs and 426 low expression DEGs. Three diagnostic feature genes including HOXA10, AFF3 and SHISA3 were identified by LASSO regression algorithm and SVM-RFE algorithm in the microarray data set. Besides, there was another characteristic gene namely PLAU in the GTEx-NPC dataset. ROC curve analysis results showed that the AUC values of characteristic genes such as HOXA10, AFF3, SHISA3 and PLAU in the diagnosis of NPC in all data sets were greater than 0.7, showing good diagnostic efficacy.
Four potential diagnostic feature gene markers for NPC based on LASSO and SVM-RFE algorithm are identified, and they provide valuable references for the diagnosis of NPC, showing a valuable reference for the early diagnosis of NPC and the study of the molecular mechanism of related genes.
[1] |
周溢, 杨丽, 张妍欣, 等. 鼻咽癌幸存者经济毒性现状及影响因素分析[J]. 军事护理, 2023(1): 15-18.
|
[2] |
薛飞, 张婷, 王锐, 等. 鼻咽癌的临床特征及诊断治疗进展[J]. 医学研究生学报, 2022, 35(11): 1213-1218. https://www.cnki.com.cn/Article/CJFDTOTAL-JLYB202211019.htm
|
[3] |
吴师雄, 谢静, 方佳宇, 等. 生物信息学方法筛选鼻咽癌的7个关键基因[J]. 武汉大学学报: 医学版, 2022, 43(2): 257-261. https://www.cnki.com.cn/Article/CJFDTOTAL-HBYK202202016.htm
|
[4] |
赵琳, 何章彪, 张欣, 等. 利用生物信息学分析鼻咽癌关键基因和信号通路[J]. 中国老年学杂志, 2021, 41(7): 1486-1490. https://www.cnki.com.cn/Article/CJFDTOTAL-ZLXZ202107046.htm
|
[5] |
ZHANG H, ZOU X, WU L R, et al. Identification of a 7-microRNA signature in plasma as promising biomarker for nasopharyngeal carcinoma detection[J]. Cancer Med, 2020, 9(3): 1230-1241. doi: 10.1002/cam4.2676
|
[6] |
GAO P, LU W H, HU S S, et al. Differentially infiltrated identification of novel diagnostic biomarkers associated with immune infiltration in nasopharyngeal carcinoma[J]. Dis Markers, 2022, 2022: 3934704.
|
[7] |
王静娴, 赵芃, 李业棉, 等. 高维生物医学数据变量筛选方法的模拟研究[J]. 西安交通大学学报: 医学版, 2021, 42(4): 628-632. https://www.cnki.com.cn/Article/CJFDTOTAL-XAYX202104027.htm
|
[8] |
LIN X H, LI C, ZHANG Y H, et al. Selecting feature subsets based on SVM-RFE and the overlapping ratio with applications in bioinformatics[J]. Molecules, 2017, 23(1): 52. doi: 10.3390/molecules23010052
|
[9] |
李慧, 曹博雅, 任璐彤, 等. 基于网络药理学的治伤风颗粒治疗感冒的作用机制探讨[J]. 实用临床医药杂志, 2021, 25(12): 18-23, 41. doi: 10.7619/jcmp.20211607
|
[10] |
盛福梅, 连旭, 韩崇旭. 甲状腺癌差异表达基因的生物信息学分析[J]. 实用临床医药杂志, 2021, 25(10): 1-5, 10. doi: 10.7619/jcmp.20211192
|
[11] |
欧阳天斌. 鼻咽癌患者调强放射治疗后鼻窦炎的临床特征分析[J]. 中国眼耳鼻喉科杂志, 2023, 23(1): 44-48. https://www.cnki.com.cn/Article/CJFDTOTAL-YRBH202301009.htm
|
[12] |
陈海珍, 陈建国, 王高仁, 等. 南通市319例鼻咽癌住院患者临床资料分析[J]. 实用肿瘤学杂志, 2022, 36(5): 411-416. https://www.cnki.com.cn/Article/CJFDTOTAL-SYZL202205004.htm
|
[13] |
GARCIA-MAGARIÑOS M, ANTONIADIS A, CAO R, et al. Lasso logistic regression, GSoft and the cyclic coordinate descent algorithm: application to gene expression data[J]. Stat Appl Genet Mol Biol, 2010, 9: 76-104.
|
[14] |
NAN S, SUN L, CHEN B, et al. Density-dependent quantized least squares support vector machine for large data sets[J]. IEEE Trans Neural Netw Learn Syst, 2017, 28(1): 94-106.
|
[15] |
DALIRI M R. Feature selection using binary particle swarm optimization and support vector machines for medical diagnosis[J]. Biomed Tech: Berl, 2012, 57(5): 395-402.
|
[16] |
DING X J, YANG F, MA F M. An efficient model selection for linear discriminant function-based recursive feature elimination[J]. J Biomed Inform, 2022, 129: 104070.
|
[17] |
GONG D, ZHU H, ZENG L, et al. Overexpression of HOXA10 promotes the growth and metastasis of nasopharyngeal carcinoma[J]. Exp Biol Med: Maywood, 2021, 246(23): 2454-2462.
|
[18] |
CHEN Z, GONG Q, LI D, et al. CircKIAA0368 promotes proliferation, migration, and invasion by upregulating HOXA10 in nasopharyngeal carcinoma[J]. Am J Rhinol Allergy, 2022, 36(5): 615-627.
|
[19] |
ZHANG J, LI Y Q, GUO R, et al. Hypermethylation of SHISA3 promotes nasopharyngeal carcinoma metastasis by reducing SGSM1 stability[J]. Cancer Res, 2019, 79(4): 747-759.
|
[20] |
ZENG Y, ZHANG X, LI F, et al. AFF3 is a novel prognostic biomarker and a potential target for immunotherapy in gastric cancer[J]. J Clin Lab Anal, 2022, 36(6): e24437.
|
[21] |
LI Z X, CHEN C H, WANG J C, et al. Overexpressed PLAU and its potential prognostic value in head and neck squamous cell carcinoma[J]. PeerJ, 2021, 9: e10746.
|
[22] |
DONG Y L, SUN Y, HUANG Y L, et al. Depletion of MLKL inhibits invasion of radioresistant nasopharyngeal carcinoma cells by suppressing epithelial-mesenchymal transition[J]. Ann Transl Med, 2019, 7(23): 741.
|
[23] |
陈彦竹, 何倩, 马宏志, 等. PI3K-Akt/mTOR/AMPK通路基因突变与鼻咽癌疗效及预后的关系[J]. 中南大学学报: 医学版, 2022, 47(2): 165-173. https://www.cnki.com.cn/Article/CJFDTOTAL-HNYD202202003.htm
|
[24] |
FAN X Q, XIE X N, YANG M, et al. YBX3 mediates the metastasis of nasopharyngeal carcinoma via PI3K/AKT signaling[J]. Front Oncol, 2021, 11: 617621.
|
1. |
张瑜,张慧慧,赵威. 他汀类药物进展性脑梗死神经功能缺损程度及胆固醇调节元件结合蛋白表达情况的影响研究. 山西医药杂志. 2024(07): 499-503 .
![]() | |
2. |
段亚萍. 基于流程再造理论优化院前急救护理在急性脑梗死患者中的应用效果. 医药前沿. 2024(26): 75-77 .
![]() |