Citation: | LI Jun, ZHANG Xizhi, QIAN Jiewei, ZHANG Xianwen, GUI Longgang, BAI Zhenglu, HOU Xiaoxiao, CHEN Xuemei. Dosimetric study of optimum treatment mode applied in intensity-modulated radiotherapy for postoperative rectal cancer[J]. Journal of Clinical Medicine in Practice, 2023, 27(9): 13-19, 38. DOI: 10.7619/jcmp.20230419 |
To explore dosimetric characteristics of multivariate combination optimal treatment model such as treatment positions (supine/prone position), collimator intensification mode[multiple static segments (MSS) and sliding window (SW)], dose calculation algorithm[Anisotropic Analytical Algorithm (AAA)]and Pencil Beam Convolution (PBC), high energy X-ray (6MV and 15MV), the number of radiation fields (7 fields versus 9 fields) and the size of calculation grids (0.25 cm versus 0.50 cm) during postoperative intensity modulated radiotherapy for rectal cancer.
Controlled single variable was applied to compare the dosimetric differences of these six conditions (a total of 12 variables) on target volume and most critical organs at risk. Then, based on the above results, the dosimetric effects on planning target volume and most critical organ at risk were compared between group A which was composed up of relatively superior six variables and group B which was composed up of relatively inferior six variables. The dosimetric parameters included the dose distribution of planning target volume and most critical organs at risk, conformal index (CI), homogeneity index (HI), monitor units (MU) and beam-on time.
Based on the statistical results under the influence of multiple variables, group A with prone position, AAA dose algorithm, dynamic SW multileaf collimators (MLC) motion mode, 15 MV X-ray, mesh size calculated by 0.25 cm and 9 field equipartition of 6 variables in series had 1.2% of decrease in mean dosage (Dmean), 10.0% of increase in CI, and 30.3% of decrease in planning target volume (PTV), while 3.0% of decrease in Dmax of small intestine, 31.2% of decrease in dosage for bladder volume of 4 000 cm3 (V40), and 3.6% of decrease in femoral head in maximum dosage (Dmax) when compared with group B with supine position, PBC algorithm, MSS motion mode, 6MV X-ray, 0.50 cm calculation grids and 7 fields equipartition.
The treatment mode of prone position, AAA algorithm, MLC motion mode of dynamic SW, 15MV X-ray, 0.25 cm calculation grids and 9 fields is supposed to be chosen as a priority for post-operative rectal cancer of intensity-modulated radiotherapy technique.
[1] |
EZZELL G A, GALVIN J M, LOW D, et al. Guidance document on delivery, treatment planning, and clinical implementation of IMRT: report of the IMRT Subcommittee of the AAPM Radiation Therapy Committee[J]. Med Phys, 2003, 30(8): 2089-2115. doi: 10.1118/1.1591194
|
[2] |
VAN'T RIET A, MAK A C, MOERLAND M A, et al. A conformation number to quantify the degree of conformality in brachytherapy and external beam irradiation: application to the prostate[J]. Int J Radiat Oncol Biol Phys, 1997, 37(3): 731-736. doi: 10.1016/S0360-3016(96)00601-3
|
[3] |
BRAGG C M, CONWAY J, ROBINSON M H. The role of intensity-modulated radiotherapy in the treatment of parotid tumors[J]. Int J Radiat Oncol Biol Phys, 2002, 52(3): 729-738. doi: 10.1016/S0360-3016(01)02660-8
|
[4] |
LIU H H, WANG X C, DONG L, et al. Feasibility of sparing lung and other thoracic structures with intensity-modulated radiotherapy for non-small-cell lung cancer[J]. Int J Radiat Oncol Biol Phys, 2004, 58(4): 1268-1279. doi: 10.1016/j.ijrobp.2003.09.085
|
[5] |
MUNDT A J, LUJAN A E, ROTMENSCH J, et al. Intensity-modulated whole pelvic radiotherapy in women with gynecologic malignancies[J]. Int J Radiat Oncol Biol Phys, 2002, 52(5): 1330-1337. doi: 10.1016/S0360-3016(01)02785-7
|
[6] |
DRZYMALA M, HAWKINS M A, HENRYS A J, et al. The effect of treatment position, prone or supine, on dose-volume histograms for pelvic radiotherapy in patients with rectal cancer[J]. Br J Radiol, 2009, 82(976): 321-327. doi: 10.1259/bjr/57848689
|
[7] |
KIM T H, KIM D Y, CHO K H, et al. Comparative analysis of the effects of belly board and bladder distension in postoperative radiotherapy of rectal cancer patients[J]. Strahlenther Onkol, 2005, 181(9): 601-605. doi: 10.1007/s00066-005-1398-3
|
[8] |
VAN ESCH A, TILLIKAINEN L, PYYKKONEN J, et al. Testing of the analytical anisotropic algorithm for photon dose calculation[J]. Med Phys, 2006, 33(11): 4130-4148. doi: 10.1118/1.2358333
|
[9] |
ENGELSMAN M, DAMEN E M, KOKEN P W, et al. Impact of simple tissue inhomogeneity correction algorithms on conformal radiotherapy of lung tumours[J]. Radiother Oncol, 2001, 60(3): 299-309. doi: 10.1016/S0167-8140(01)00387-5
|
[10] |
SHAHINE B H, AL-GHAZI M S A L, EL-KHATIB E. Experimental evaluation of interface doses in the presence of air cavities compared with treatment planning algorithms[J]. Med Phys, 1999, 26(3): 350-355. doi: 10.1118/1.598526
|
[11] |
CAPRILE P, VENENCIA C D, BESA P. Comparison between measured and calculated dynamic wedge dose distributions using the anisotropic analytic algorithm and pencil-beam convolution[J]. J Appl Clin Med Phys, 2007, 8(1): 47-54. doi: 10.1120/jacmp.v8i1.2370
|
[12] |
FOGLIATA A, NICOLINI G, VANETTI E, et al. The impact of photon dose calculation algorithms on expected dose distributions in lungs under different respiratory phases[J]. Physics in medicine and biology, 2008, 53(9): 2375-2390. doi: 10.1088/0031-9155/53/9/011
|
[13] |
PANETTIERI V, BARSOUM P, WESTERMARK M, et al. AAA and PBC calculation accuracy in the surface build-up region in tangential beam treatments. Phantom and breast case study with the Monte Carlo code Penelope[J]. Radiother Oncol, 2009, 93(1): 94-101. doi: 10.1016/j.radonc.2009.05.010
|
[14] |
KNOOS T, CEBERG C, WEBER L, et al. The dosimetric verification of a pencil beam based treatment planning system[J]. Phys Med Biol, 1994, 39(10): 1609-1628. doi: 10.1088/0031-9155/39/10/007
|
[15] |
ASPRADAKIS M, MORRISON R, RICHMOND N, et al. Experimental verification of convolution/superposition photon dose calculations for radiotherapy treatment planning[J]. Physics in medicine and biology, 2003, 48(3): 2873-2893.
|
[16] |
BRAGG C M, WINGATE K, CONWAY J. Clinical implications of the anisotropic analytical algorithm for IMRT treatment planning and verification[J]. Radiother Oncol, 2008, 86(2): 276-284. doi: 10.1016/j.radonc.2008.01.011
|
[17] |
RØNDE H S, HOFFMANN L. Validation of Varian′s AAA algorithm with focus on lung treatments[J]. Acta Oncol, 2009, 48(2): 209-215. doi: 10.1080/02841860802287108
|
[18] |
AARUP L R, NAHUM A E, ZACHARATOU C, et al. The effect of different lung densities on the accuracy of various radiotherapy dose calculation methods: implications for tumour coverage[J]. Radiother Oncol, 2009, 91(3): 405-414. doi: 10.1016/j.radonc.2009.01.008
|
[19] |
POTTER L D, CHANG S X, CULLIP T J, et al. A quality and efficiency analysis of the IMFASTTM segmentation algorithm in head and neck "step & shoot" IMRT treatments[J]. Med Phys, 2002, 29(3): 275-283. doi: 10.1118/1.1428755
|
[20] |
KUBO H D, PAPPAS C T E, WILDER R B. A comparison of arc-based and static mini-multileaf collimator-based radiosurgery treatment plans[J]. Radiother Oncol, 1997, 45(1): 89-93. doi: 10.1016/S0167-8140(97)00104-7
|
[21] |
KULIK C, CAUDRELIER J M, VERMANDEL M, et al. Conformal radiotherapy optimization with micromultileaf collimators: comparison with radiosurgery techniques 1[J]. Int J Radiat Oncol, 2002, 53(4): 1038-1050. doi: 10.1016/S0360-3016(02)02863-8
|
[22] |
MADANI I, VANDERSTRAETEN B, BRAL S, et al. Comparison of 6 MV and 18 MV photons for IMRT treatment of lung cancer[J]. Radiother Oncol, 2007, 82(1): 63-69. doi: 10.1016/j.radonc.2006.11.016
|
[23] |
LAUGHLIN J S, MOHAN R, KUTCHER G J. Choice of optimum megavoltage for accelerators for photon beam treatment[J]. Int J Radiat Oncol, 1986, 12(9): 1551-1557. doi: 10.1016/0360-3016(86)90277-4
|
[24] |
HALL E J. Intensity-modulated radiation therapy, protons, and the risk of second cancers[J]. Int J Radiat Oncol, 2006, 65(1): 1-7. doi: 10.1016/j.ijrobp.2006.01.027
|
[25] |
AOYAMA H, WESTERLY D C, MACKIE T R, et al. Integral radiation dose to normal structures with conformal external beam radiation[J]. Int J Radiat Oncol, 2006, 64(3): 962-967. doi: 10.1016/j.ijrobp.2005.11.005
|
[26] |
WEISS E, SIEBERS J V, KEALL P J. An analysis of 6-MV versus 18-MV photon energy plans for intensity-modulated radiation therapy (IMRT) of lung cancer[J]. Radiother Oncol, 2007, 82(1): 55-62. doi: 10.1016/j.radonc.2006.10.021
|
[27] |
WELSH J S, MACKIE T R, LIMMER J P. High-energy photons in IMRT: uncertainties and risks for questionable gain[J]. Technol Cancer Res Treat, 2007, 6(2): 147-149. doi: 10.1177/153303460700600212
|
[28] |
HUQ M S, YU Y, CHEN Z P, et al. Dosimetric characteristics of a commercial multileaf collimator[J]. Med Phys, 1995, 22(2): 241-247. doi: 10.1118/1.597461
|
[29] |
KRY S F, SALEHPOUR M, FOLLOWILL D S, et al. The calculated risk of fatal secondary malignancies from intensity-modulated radiation therapy[J]. Int J Radiat Oncol, 2005, 62(4): 1195-1203. doi: 10.1016/j.ijrobp.2005.03.053
|
[30] |
CHUNG H, JIN H, PALTA J, et al. Dose variations with varying calculation grid size in head and neck IMRT[J]. Phys Med Biol, 2006, 51(19): 4841-4856. doi: 10.1088/0031-9155/51/19/008
|
[31] |
MITTAUER K, LU B, YAN G H, et al. A study of IMRT planning parameters on planning efficiency, delivery efficiency, and plan quality[J]. Med Phys, 2013, 40(6): 061704.
|
[32] |
MA H, HAN J, ZHANG T, et al. Comparison of dosiology between three dimensional conformal and intensity-modulated radiotherapies (5 and 7 fields) in gastric cancer post-surgery[J]. J Huazhong Univ Sci Technol, 2013, 33(5): 759-764. doi: 10.1007/s11596-013-1193-9
|
[33] |
李军. 基于Varian clinac-Ⅸ直线加速器放疗系统的技术分析和临床剂量学研究[D]. 南京: 南京航空航天大学, 2016.
|
[34] |
张先稳, 李军, 张西志, 等. 宫颈癌术后5野调强放疗4个变量组合的最佳治疗模式的剂量学[J]. 中国医学物理学杂志, 2016, 33(9): 872-880. doi: 10.3969/j.issn.1005-202X.2016.09.002
|
[35] |
李军, 陈雪梅, 张西志, 等. 宫颈癌术后常规与旋转容积调强放疗计划剂量学研究[J]. 中华肿瘤防治杂志, 2014, 21(14): 1104-1108. doi: 10.16073/j.cnki.cjcpt.2014.14.008
|
1. |
杨可非,刘文靖,周新尧,姜泉. 基于“体脏合痹”理论探讨干燥综合征病机论治. 中国中医基础医学杂志. 2025(02): 236-240 .
![]() | |
2. |
邹怡萌,邹纯朴,陈晓,朱杨壮壮,苏琳,胥孜杭. 基于“肺主皮毛”理论的中西联系与思考. 北京中医药大学学报. 2024(01): 42-48 .
![]() | |
3. |
张盈,杨波,蔡新利,王霜,王迎春. 干燥综合征患者血清HMGB1、Progranulin与NK细胞亚群和间质性肺疾病的关系研究. 现代生物医学进展. 2024(20): 3867-3869 .
![]() | |
4. |
陈嘉琪,杨建英,吴子华,张丽宁,张燕,胡琪,贺倩,黄子玮,余新波,罗静,陶庆文. 原发性干燥综合征合并间质性肺病的中医证候特点及相关因素分析. 中国实验方剂学杂志. 2023(08): 66-72 .
![]() | |
5. |
彭艳茹,闫世艳,罗成,张宁,李睿,王玉光. 中医药联合西医治疗干燥综合征相关间质性肺疾病的临床疗效和安全性的系统评价. 中国医院用药评价与分析. 2023(08): 980-984 .
![]() | |
6. |
王菲,时美红. 原发性干燥综合征患者唇腺组织中BTB/POZ结构域蛋白7及基质金属蛋白酶-9的表达与自身抗体的关系. 实用临床医药杂志. 2022(21): 98-102 .
![]() |