SHENG Huaming, LI Sen, DENG Lichun, YAO Yong. Mechanism of long non-coding RNA GATA3-antisense RNA 1 in regulating the proliferation, migration and invasion of colorectal cancer SW620 cells[J]. Journal of Clinical Medicine in Practice, 2023, 27(14): 51-57. DOI: 10.7619/jcmp.20231117
Citation: SHENG Huaming, LI Sen, DENG Lichun, YAO Yong. Mechanism of long non-coding RNA GATA3-antisense RNA 1 in regulating the proliferation, migration and invasion of colorectal cancer SW620 cells[J]. Journal of Clinical Medicine in Practice, 2023, 27(14): 51-57. DOI: 10.7619/jcmp.20231117

Mechanism of long non-coding RNA GATA3-antisense RNA 1 in regulating the proliferation, migration and invasion of colorectal cancer SW620 cells

More Information
  • Received Date: April 09, 2023
  • Revised Date: June 18, 2023
  • Available Online: July 30, 2023
  • Objective 

    To explore whether long noncoding RNA (lncRNA) GATA3-antisense RNA 1 (lncRNA GATA3-AS1)regulates the proliferation, migration, and invasion of colorectal cancer SW620 cells by targeting microRNA-574-3p(miR-574-3p).

    Methods 

    Reverse transcription-quantitative polymerase chain reaction (RT-qPCR) was used to determine the expressions of lncRNA GATA3-AS1 and miR-574-3p in colorectal cancer tissues of 43 cases and para-cancerous tissue. The SW620 cells were divided into si-NC group, si-GATA3-AS1 group, miR-NC group, miR-574-3p group, si-GATA3-AS1+anti-miR-NC group, si-GATA3-AS1+anti-miR-574-3p group according to different transfection. The cell counting kit-8 (CCK-8) method was used to detect cell proliferation activity, the clone formation experiment to measure the number of cell clones, the scratch test to examine the scratch healing rate, the Transwell experiment to analyze cell invasion, and the Western blot to determine the expression of migration and invasion related proteins E-cadherin and N-cadherin. The dual luciferase reporter experiment was used to detect the targeting relationship between lncRNA GATA3-AS1 and miR-574-3p.

    Results 

    The expression of lncRNA GATA3-AS1 in colorectal cancer tissues was higher, and the expression of miR-574-3p decreased compared with that in the adjacent tissues (P < 0.05). SW620 cells in the si-GATA3-AS1 group had lower proliferation activity, the number of clone formation, scratch healing rate, the number of invasive cell, and N-cadherin protein expression than the si-NC group, but the expression of E-cadherin protein was higher than that of si-NC group (P < 0.05). SW620 cell proliferation activity, the number of clone formation, scratch healing rate, the number of invasive cells, and N-cadherin protein expression in the miR-574-3p group were lower than those in the miR-NC group, and the E-cadherin protein expression level was higher than that of the miR-NC group (P < 0.05). LncRNA GATA3-AS1 targeted and regulated the expression of miR-574-3p. The proliferation activity, the number of clone cells, scratch healing rate, number of invasive cells and N-cadherin protein expression of SW620 cells in the si-GATA3-AS1+anti-miR-574-3p group were all higher than those in si-GATA3-AS1+anti-miR-NC group, while the expression level of E-cadherin protein was lower than that of the si-GATA3-AS1+anti-miR-NC group (P < 0.05).

    Conclusion 

    LncRNA GATA3-AS1 is up-regulated in colorectal cancer, and can promote the proliferation, migration and invasion of colorectal cancer cells SW620 by targeting miR-574-3p regulation.

  • [1]
    PERISETTI A, GOYAL H, THARIAN B, et al. Aspirin for prevention of colorectal cancer in the elderly: friend or foe[J]. Ann Gastroenterol, 2021, 34(1): 1-11.
    [2]
    HULTCRANTZ R. Aspects of colorectal cancer screening, methods, age and gender[J]. J Intern Med, 2021, 289(4): 493-507. doi: 10.1111/joim.13171
    [3]
    CHEN Y Y, LI Z J, CHEN X G, et al. Long non-coding RNAs: from disease code to drug role[J]. Acta Pharm Sin B, 2021, 11(2): 340-354. doi: 10.1016/j.apsb.2020.10.001
    [4]
    DRILLIS G, GOULIELMAKI M, SPANDIDOS D A, et al. Non-coding RNAs (miRNAs and lncRNAs) and their roles in lymphogenesis in all types of lymphomas and lymphoid malignancies[J]. Oncol Lett, 2021, 21(5): 393. doi: 10.3892/ol.2021.12654
    [5]
    LIU M, LIU H M, ZHOU J, et al. miR-140-5p inhibits the proliferation of multiple myeloma cells by targeting VEGFA[J]. Mol Med Rep, 2021, 23(1): 53.
    [6]
    GIBBONS H R, SHAGINUROVA G, KIM L C, et al. Divergent lncRNA GATA3-AS1 regulates GATA3 transcription in T-helper 2 cells[J]. Front Immunol, 2018, 9: 2512. doi: 10.3389/fimmu.2018.02512
    [7]
    LIU Y H, XU G, LI L. LncRNA GATA3-AS1-miR-30b-5p-Tex10 axis modulates tumorigenesis in pancreatic cancer[J]. Oncol Rep, 2021, 45(5): 59. doi: 10.3892/or.2021.8010
    [8]
    LUO X E, ZHOU N, WANG L, et al. Long noncoding RNA GATA3-AS1 promotes cell proliferation and metastasis in hepatocellular carcinoma by suppression of PTEN, CDKN1A, and TP53[J]. Can J Gastroenterol Hepatol, 2019, 2019: 1389653.
    [9]
    LIU D F, PENG S H, LI Y Y, et al. Circ-MFN2 positively regulates the proliferation, metastasis, and radioresistance of colorectal cancer by regulating the miR-574-3p/IGF1R signaling axis[J]. Front Genet, 2021, 12: 671337. doi: 10.3389/fgene.2021.671337
    [10]
    CONTRERAS-ESPINOSA L, ALCARAZ N, DE LA ROSA-VELÁZQUEZ I A, et al. Transcriptome analysis identifies GATA3-AS1 as a long noncoding RNA associated with resistance to neoadjuvant chemotherapy in locally advanced breast cancer patients[J]. J Mol Diagn, 2021, 23(10): 1306-1323. doi: 10.1016/j.jmoldx.2021.07.014
    [11]
    ZHU Y P, BIAN X J, YE D W, et al. Long noncoding RNA expression signatures of bladder cancer revealed by microarray[J]. Oncol Lett, 2014, 7(4): 1197-1202. doi: 10.3892/ol.2014.1843
    [12]
    ZHANG M, WANG N, SONG P, et al. LncRNA GATA3-AS1 facilitates tumour progression and immune escape in triple-negative breast cancer through destabilization of GATA3 but stabilization of PD-L1[J]. Cell Prolif, 2020, 53(9): e12855. doi: 10.1111/cpr.12855
    [13]
    ZHANG P N, ZHU J, ZHENG Y, et al. miRNA-574-3p inhibits metastasis and chemoresistance of epithelial ovarian cancer (EOC) by negatively regulating epidermal growth factor receptor (EGFR)[J]. Am J Transl Res, 2019, 11(7): 4151-4165.
    [14]
    JIN L L, ZHANG S J, LU G X, et al. miR-574-3p inhibits proliferation and invasion in esophageal cancer by targeting FAM3C and MAPK1[J]. Kaohsiung J Med Sci, 2020, 36(5): 318-327. doi: 10.1002/kjm2.12176
    [15]
    ZHA Z M, JIA F X, HU P G, et al. microRNA-574-3p inhibits the malignant behavior of liver cancer cells by targeting ADAM28[J]. Oncol Lett, 2020, 20(3): 3015-3023. doi: 10.3892/ol.2020.11852
    [16]
    LI W C, WU Y Q, GAO B, et al. MiRNA-574-3p inhibits cell progression by directly targeting CCND2 in colorectal cancer[J]. Biosci Rep, 2019, 39(12): BSR20190976. doi: 10.1042/BSR20190976
    [17]
    ZHENG J, ZHOU Y, LI X J, et al. miR-574-3p exerts as a tumor suppressor in ovarian cancer through inhibiting MMP3 expression[J]. Eur Rev Med Pharmacol Sci, 2019, 23(16): 6839-6848.
    [18]
    WANG M Q, ZHANG R W, ZHANG S, et al. microRNA-574-3p regulates epithelial mesenchymal transition and cisplatin resistance via targeting ZEB1 in human gastric carcinoma cells[J]. Gene, 2019, 700: 110-119. doi: 10.1016/j.gene.2019.03.043
    [19]
    LIN S Y, ZHAO M Y, LV Y B, et al. The lncRNA GATA3-AS1/miR-495-3p/CENPU axis predicts poor prognosis of breast cancer via the PLK1 signaling pathway[J]. Aging, 2021, 13(10): 13663-13679. doi: 10.18632/aging.202909
    [20]
    CHU D M, LIU T T, YAO Y, et al. LINC00997/MicroRNA 574-3p/CUL2 promotes cervical cancer development via mitogen-activated protein kinase signaling[J]. Mol Cell Biol, 2021, 41(8): e0005921. doi: 10.1128/MCB.00059-21
    [21]
    XU J H, CHEN R Z, LIU L Y, et al. LncRNA ZEB2-AS1 promotes the proliferation, migration and invasion of esophageal squamous cell carcinoma cell through miR-574-3p/HMGA2 axis[J]. Eur Rev Med Pharmacol Sci, 2020, 24(10): 5391-5403.
  • Cited by

    Periodical cited type(15)

    1. 高淑彦,赵瑞芳,李文静,刘倩楠,沈青青. 阿托伐他汀钙联合环磷腺苷与托拉塞米治疗老年慢性心功能不全的疗效及对血清BNP、Gal-3、sICAM-1水平的影响. 临床和实验医学杂志. 2025(01): 5-9 .
    2. 谢兆莉,张耀堂,苏书艳. 环磷腺苷葡胺联合新四联方案治疗慢性心力衰竭的疗效及对心功能指标的影响. 临床合理用药. 2025(08): 16-19 .
    3. 田茂婷,朱应华. 沙库巴曲缬沙坦联合环磷腺苷葡胺对老年慢性心力衰竭患者心率变异性及心功能的影响. 中外医疗. 2024(03): 104-107 .
    4. 李树云,刘爱环,郝玲. 卡托普利与左西孟旦共同治疗慢性心力衰竭的效果. 慢性病学杂志. 2024(05): 755-758 .
    5. 王坤,孔令才,许林艳,王磊. 心脉隆注射液联合环磷腺苷葡胺治疗高龄慢性心力衰竭效果分析. 世界复合医学(中英文). 2024(02): 9-12 .
    6. 王斌. 注射用环磷腺苷葡胺联合复窦合剂对急性心肌梗死后心律失常的应用效果及对QRS波时限、左室射血分数水平影响. 中华养生保健. 2024(16): 53-56 .
    7. 葛梦芸. 氧化樟脑注射液联合环磷腺苷葡胺治疗心力衰竭的临床疗效分析. 北方药学. 2024(11): 149-151 .
    8. 应璇,贾彩乐,何好权,陈舒,刘俊. 麝香通心滴丸联合沙库巴曲缬沙坦对慢性心力衰竭患者的临床疗效观察. 浙江医学. 2023(06): 617-620 .
    9. 窦东锋,刘洪光,张丽芬. 单硝酸异山梨酯联合培哚普利叔丁胺治疗老年慢性心力衰竭患者的疗效. 国际医药卫生导报. 2023(09): 1276-1280 .
    10. 赵智慧,宋雨,吴东彬,王娇娇. 冠心宁联合单硝酸异山梨酯治疗慢性心力衰竭患者临床疗效及对心功能的影响. 药学研究. 2023(05): 348-351 .
    11. 祖建杰. 卡维地洛联合硝酸异山梨酯在治疗重症心力衰竭中的疗效及其对血清CXCL10和CXCL12水平的影响. 检验医学与临床. 2023(20): 3033-3036 .
    12. 刘长英. 左西孟旦与环磷腺苷葡胺联合治疗顽固性心力衰竭的临床观察. 大医生. 2023(22): 56-58 .
    13. 郭城楠. 慢性心力衰竭药物治疗临床研究进展. 天津药学. 2022(04): 64-69 .
    14. 韩勇,郭艳涛. 单硝酸异山梨酯联合培哚普利叔丁胺治疗慢性心力衰竭的疗效. 深圳中西医结合杂志. 2022(15): 96-99 .
    15. 朱明. 环磷腺苷葡胺对老年慢性心力衰竭治疗效果. 现代诊断与治疗. 2022(23): 3533-3536 .

    Other cited types(2)

Catalog

    Article views (151) PDF downloads (15) Cited by(17)

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return