LI Sicheng, GUO Heming, HUANG Yun, LIU Cuiping, FANG Chen, HU Ji. Expression of programmed death receptor ligand 1 in B cells and B cell subsets of patients with type 1 diabetes mellitus[J]. Journal of Clinical Medicine in Practice, 2023, 27(20): 131-136, 141. DOI: 10.7619/jcmp.20231932
Citation: LI Sicheng, GUO Heming, HUANG Yun, LIU Cuiping, FANG Chen, HU Ji. Expression of programmed death receptor ligand 1 in B cells and B cell subsets of patients with type 1 diabetes mellitus[J]. Journal of Clinical Medicine in Practice, 2023, 27(20): 131-136, 141. DOI: 10.7619/jcmp.20231932

Expression of programmed death receptor ligand 1 in B cells and B cell subsets of patients with type 1 diabetes mellitus

More Information
  • Received Date: June 14, 2023
  • Revised Date: October 09, 2023
  • Available Online: November 05, 2023
  • Objective 

    To investigate the expression of programmed death receptor ligand 1 (PD-L1) in circulating B cells of patients with type 1 diabetes mellitus (T1DM).

    Methods 

    Peripheral blood samples were collected from healthy controls (n=25) and T1DM patients (n=25). The expression of PD-L1 on B cells and their surfaces was detected by flow cytometry.

    Results 

    There was no significant difference in the frequency of B cell subsets between the T1DM patients and healthy controls (P>0.05). Compared with healthy controls, the expression of PD-L1 on CD19+ cells, CD19+CD27+ cells and CD19+CD27+ cells in the T1DM patients was significantly decreased (P < 0.05). There was no significant difference in the expression of PD-L1 in B10 cells, marginal zone B cells (MZB) and follicular B cells (FoB) between healthy controls and T1DM patients (P>0.05). The expression of PD-L1 on transitional 2-marginal zone precursor B cells (T2-MZP) cells in the T1DM patients was lower than that in the healthy controls (P < 0.05).

    Conclusion 

    The PD-L1 may play a protective role in the pathogenesis of T1DM. B cells with high expression of PD-L1 may provide a new strategy for the treatment of patients with autoimmune diabetes.

  • [1]
    TODD J A. Etiology of type 1 diabetes[J]. Immunity, 2010, 32(4): 457-467. doi: 10.1016/j.immuni.2010.04.001
    [2]
    PESCOVITZ M D, GREENBAUM C J, BUNDY B, et al. B-lymphocyte depletion with rituximab and β-cell function: two-year results[J]. Diabetes Care, 2014, 37(2): 453-459. doi: 10.2337/dc13-0626
    [3]
    KLINKER M W, LUNDY S K. Multiple mechanisms of immune suppression by B lymphocytes[J]. Mol Med, 2012, 18(1): 123-137. doi: 10.2119/molmed.2011.00333
    [4]
    GULERIA I, GUBBELS BUPP M, DADA S, et al. Mechanisms of PDL1-mediated regulation of autoimmune diabetes[J]. Clin Immunol, 2007, 125(1): 16-25. doi: 10.1016/j.clim.2007.05.013
    [5]
    CHEN X H, GUO H M, LI S C, et al. Soluble programmed death-1 ligand 1(sPD-L1) is significantly reduced in the serum of type 1 diabetes patients[J]. Acta Diabetol, 2018, 55(5): 515-517. doi: 10.1007/s00592-017-1081-z
    [6]
    HANLEY P, SUTTER J A, GOODMAN N G, et al. Circulating B cells in type 1 diabetics exhibit fewer maturation-associated phenotypes[J]. Clin Immunol, 2017, 183: 336-343. doi: 10.1016/j.clim.2017.09.021
    [7]
    BECK R W, TAMBORLANE W V, BERGENSTAL R M, et al. The T1D Exchange clinic registry[J]. J Clin Endocrinol Metab, 2012, 97(12): 4383-4389. doi: 10.1210/jc.2012-1561
    [8]
    SERREZE D V, SILVEIRA P A. The role of B lymphocytes as key antigen-presenting cells in the development of T cell-mediated autoimmune type 1 diabetes[M]//Current Directions in Autoimmunity. Basel: KARGER, 2002: 212-227.
    [9]
    DENG C, XIANG Y F, TAN T T, et al. The imbalance of B-lymphocyte subsets in subjects with different glucose tolerance: relationship with metabolic parameter and disease status[J]. J Diabetes Res, 2017, 2017: 5052812.
    [10]
    FUJISAWA R, HASEDA F, TSUTSUMI C, et al. Low programmed cell death-1 (PD-1) expression in peripheral CD4(+) T cells in Japanese patients with autoimmune type 1 diabetes[J]. Clin Exp Immunol, 2015, 180(3): 452-457. doi: 10.1111/cei.12603
    [11]
    GAUCI M L, LALY P, VIDAL-TRECAN T, et al. Autoimmune diabetes induced by PD-1 inhibitor-retrospective analysis and pathogenesis: a case report and literature review[J]. Cancer Immunol Immunother, 2017, 66(11): 1399-1410. doi: 10.1007/s00262-017-2033-8
    [12]
    SERREZE D V, CHAPMAN H D, VARNUM D S, et al. B lymphocytes are essential for the initiation of T cell-mediated autoimmune diabetes: analysis of a new "speed congenic" stock of NOD. Ig mu null mice[J]. J Exp Med, 1996, 184(5): 2049-2053. doi: 10.1084/jem.184.5.2049
    [13]
    JEONG Y I, HONG S H, CHO S H, et al. Induction of IL-10-producing CD1dhighCD5+ regulatory B cells following Babesia microti-infection[J]. PLoS One, 2012, 7(10): e46553. doi: 10.1371/journal.pone.0046553
    [14]
    ATTANAVANICH K, KEARNEY J. Marginal zone, but not follicular B cells, are potent activators of naive CD4 T Cells1[J]. J Immunol, 2004, 172: 803-811. doi: 10.4049/jimmunol.172.2.803
    [15]
    THIBULT M L, MAMESSIER E, GERTNER-DARDENNE J, et al. PD-1 is a novel regulator of human B-cell activation[J]. Int Immunol, 2013, 25(2): 129-137. doi: 10.1093/intimm/dxs098
    [16]
    BODHANKAR S, GALIPEAU D, VANDENBARK A, et al. PD-1 interaction with PD-L1 but not PD-L2 on B-cells mediates protective effects of estrogen against EAE[J]. Journal of Clinical & Cellular Immunology, 2013, 4(3): 143.
    [17]
    KHAN A R, HAMS E, FLOUDAS A, et al. PD-L1hi B cells are critical regulators of humoral immunity[J]. Nat Commun, 2015, 6: 5997. doi: 10.1038/ncomms6997
    [18]
    TANGYE S G, AVERY D T, HODGKIN P D. A division-linked mechanism for the rapid generation of ig-secreting cells from human memory B cells[J]. J Immunol, 2003, 170(1): 261-269. doi: 10.4049/jimmunol.170.1.261
    [19]
    TANGYE S G, LIU Y J, AVERSA G, et al. Identification of functional human splenic memory B cells by expression of CD148 and CD27[J]. J Exp Med, 1998, 188(9): 1691-1703. doi: 10.1084/jem.188.9.1691
    [20]
    GOOD K L, AVERY D, TANGYE S. Resting human memory B cells are intrinsically programmed for enhanced survival and responsiveness to diverse stimuli compared to naive B Cells1[J]. J Immunol, 2009, 182: 890-901. doi: 10.4049/jimmunol.182.2.890
    [21]
    YANG M, RUI K, WANG S J, et al. Regulatory B cells in autoimmune diseases[J]. Cell Mol Immunol, 2013, 10(2): 122-132. doi: 10.1038/cmi.2012.60
    [22]
    EVANS J G, CHAVEZ-RUEDA K A, EDDAOUDI A, et al. Novel suppressive function of transitional 2 B cells in experimental arthritis[J]. J Immunol, 2007, 178(12): 7868-7878. doi: 10.4049/jimmunol.178.12.7868
    [23]
    GRAY M, MILES K, SALTER D, et al. Apoptotic cells protect mice from autoimmune inflammation by the induction of regulatory B cells[J]. Proc Natl Acad Sci U S A, 2007, 104(35): 14080-14085. doi: 10.1073/pnas.0700326104
    [24]
    MENART-HOUTERMANS B, RVTTER R, NOWOTNY B, et al. Leukocyte profiles differ between type 1 and type 2 diabetes and are associated with metabolic phenotypes: results from the German Diabetes Study (GDS)[J]. Diabetes Care, 2014, 37(8): 2326-2333. doi: 10.2337/dc14-0316
  • Related Articles

    [1]WANG Jianjian, SANG Xuehan, MENG Zhaoxiang, CHEN Gang, ZHOU Hongyu, CHEN Bo, WANG Xin, JIN Xing. Effect of visual feedback balance training on balance and walking ability of patients after total knee arthroplasty[J]. Journal of Clinical Medicine in Practice, 2023, 27(1): 74-78. DOI: 10.7619/jcmp.20222593
    [2]LI Nan, LI Jian, WANG Congxiao, FAN Zhijiao, QIE Shuyan. Effect of virtual reality balance training on knee joint function after anteriorcruciate ligament reconstruction[J]. Journal of Clinical Medicine in Practice, 2022, 26(22): 7-11. DOI: 10.7619/jcmp.20222483
    [3]ZHOU Yiyi, LIU Yi, YUAN Peng, MAO Yiheng. Application value of a wearable precise rehabilitation system in treatment of elderly patients after total knee arthroplasty[J]. Journal of Clinical Medicine in Practice, 2022, 26(17): 1-4, 9. DOI: 10.7619/jcmp.20214846
    [4]GAO Huanxiong, ZHANG Ruixia. Effect of pain control nursing on postoperative knee joint function in knee joint fracture patients[J]. Journal of Clinical Medicine in Practice, 2019, 23(15): 122-125. DOI: 10.7619/jcmp.201915034
    [5]HAO Yanfang, XU Xiaomei. The effect of pathway nursing measures on swelling, pain and functional recovery after total knee replacement[J]. Journal of Clinical Medicine in Practice, 2017, (16): 75-78. DOI: 10.7619/jcmp.201716024
    [6]HE Yanping, LI Ronghang, LI Shuchun, WANG Chunxin. Perioperative nursing of patients with degenerative joint disease of knee joint treated by pressure equalization of knee joint[J]. Journal of Clinical Medicine in Practice, 2017, (12): 94-97. DOI: 10.7619/jcmp.201712028
    [7]ZHANG Qi. Influence of comprehensive nursing on efficacy of knee osteoarthritis treated by sodium hyaluronate injection in knee joint cavity[J]. Journal of Clinical Medicine in Practice, 2016, (6): 73-75. DOI: 10.7619/jcmp.201606023
    [8]CHEN Yong, LIU Jingmei, LI Hong, FENG Yingjie, ZHANG Ping. Effect of nursing intervention on postoperative recovery of knee joint function of patients with patella fracture[J]. Journal of Clinical Medicine in Practice, 2016, (4): 97-99. DOI: 10.7619/jcmp.201604030
    [9]DU Lijuan. Effect of modular rehabilitation program on the functional rehabilitation of knee joint in tibial plateau fracture patients[J]. Journal of Clinical Medicine in Practice, 2016, (4): 93-96. DOI: 10.7619/jcmp.201604029
    [10]CHEN Wenge. Simultaneous bilateral total knee arthroplasty in the treatment of 18 patients with severely deformed knee joint disease[J]. Journal of Clinical Medicine in Practice, 2013, (17): 61-63. DOI: 10.7619/jcmp.201317020
  • Cited by

    Periodical cited type(10)

    1. 王晶一,郑娅,史海燕. 银杏二萜内酯葡胺注射液联合调督舒筋手法对急性脑梗死患者ET-1、S100β及血液流变学的影响. 中国基层医药. 2024(11): 1693-1698 .
    2. 朱珊珊,崔丽,徐军伟. 银杏二萜内酯葡胺联合阿加曲班在急性脑梗死中的应用效果. 河南医学研究. 2023(11): 2043-2047 .
    3. 卢长岭. 银杏二萜内酯葡胺在急性缺血性脑卒中患者中的应用. 实用中西医结合临床. 2023(18): 20-22+33 .
    4. 周承升,赵浚乐. 依达拉奉联合银杏二萜内酯治疗脑梗死后功能障碍的效果. 内蒙古中医药. 2022(03): 109-111 .
    5. 张怡. 双抗与银杏二萜内酯葡胺联合替罗非班治疗小分支脑动脉闭塞引发急性脑梗死的疗效对比. 当代临床医刊. 2022(03): 66-67 .
    6. 郭娟娟. 银杏二萜内酯葡胺与阿司匹林在急性脑梗死中的治疗效果及对BI、NIHSS、QOLISP评分的影响分析. 中外医疗. 2022(09): 14-18 .
    7. 李瑾,高晓红,王玉梅. 银杏二萜内酯葡胺对脑梗死合并多发性颅内动脉狭窄的影响. 中国社区医师. 2022(19): 55-57 .
    8. 周安. 阿加曲班联合银杏二萜内酯葡胺注射液治疗后循环脑梗死的效果. 医学理论与实践. 2022(20): 3464-3466 .
    9. 孙忠发,吴剑冰,尤东阳,孙强. 银杏二萜注射液对急性脑梗死溶栓患者认知功能与血液流变学的影响. 北方药学. 2022(11): 10-12 .
    10. 李贞,蒋磊,徐维平. 242例住院患者银杏二萜内酯葡胺注射液合理用药分析. 中国药业. 2021(14): 111-113 .

    Other cited types(2)

Catalog

    Article views (129) PDF downloads (3) Cited by(12)

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return