Citation: | ZHUANG Lixia, ZHANG Jie, CHEN Peixin. Application value of serum transforming growth factor-β1 and alkaline phosphatase in diagnosing severe neonatal necrotizing enterocolitis[J]. Journal of Clinical Medicine in Practice, 2023, 27(19): 67-70. DOI: 10.7619/jcmp.20232084 |
To investigate the application value of serum transforming growth factor-β1 (TGF-β1) and intestinal alkaline phosphatase (IAP) in the diagnosis of severe neonatal necrotizing small bowel colitis (NEC).
A total of 82 NEC neonates were selected as NEC group, and were divided into mild group(21 cases), moderate group(43 cases), and severe group(18 cases) according to the modified Bell-NEC stage, and another 80 healthy neonates were selected as control group during the same period. Serum TGF-β1 and IAP levels were detected in each group. The correlations of serum TGF-β1 and IAP levels with Bell-NEC stage were analyzed by Spearman rank correlation, and receiver operating characteristic (ROC) curve was used to analyze the diagnostic value of serum TGF-β1 and IAP levels on NEC in critically ill neonates.
Compared with the control group, serum TGF-β1 and IAP levels were reduced in the NEC group (P<0.05). The serum TGF-β1 and IAP levels of children with NEC in the mild, moderate, and severe groups were reduced sequentially (P<0.05). Spearman's rank correlation analysis showed that serum TGF-β1 and IAP levels in children with NEC stage were negatively correlated with Bell-NEC stage (rs=-0.669, -0.658, P<0.001). ROC curve analysis showed that the area under the curve of serum TGF-β1 and IAP levels alone and their combination in the diagnosis of severe neonatal NEC was 0.783, 0.780, and 0.905, respectively.
Decreased serum TGF-β1 and IAP levels in NEC neonates are associated with severity of disease, and the combined serum TGF-β1 and IAP levels are of high value in the diagnosis of severe neonatal NEC and may be an auxiliary diagnostic index for severe neonatal NEC.
[1] |
中国医师协会新生儿科医师分会循证专业委员会. 新生儿坏死性小肠结肠炎临床诊疗指南(2020)[J]. 中国当代儿科杂志, 2021, 23(1): 1-11. https://www.cnki.com.cn/Article/CJFDTOTAL-YLYS202102070.htm
|
[2] |
CAO X C, ZHANG L, JIANG S Y, et al. Epidemiology of necrotizing enterocolitis in preterm infants in China: a multicenter cohort study from 2015 to 2018[J]. J Pediatr Surg, 2022, 57(3): 382-386. doi: 10.1016/j.jpedsurg.2021.05.014
|
[3] |
SINGH D K, MILLER C M, ORGEL K A, et al. Necrotizing enterocolitis: bench to bedside approaches and advancing our understanding of disease pathogenesis[J]. Front Pediatr, 2022, 10: 1107404.
|
[4] |
MOREAU J M, VELEGRAKI M, BOLYARD C, et al. Transforming growth factor-β1 in regulatory T cell biology[J]. Sci Immunol, 2022, 7(69): eabi4613. doi: 10.1126/sciimmunol.abi4613
|
[5] |
李秋平, 余加林, 胡坤, 等. 丁酸对新生儿坏死性小肠结肠炎新生小鼠模型的保护作用[J]. 解放军医学杂志, 2018, 43(3): 201-205. https://www.cnki.com.cn/Article/CJFDTOTAL-JFJY201803004.htm
|
[6] |
赵倩, 李赛男, 黄蓉, 等. 碱性磷酸酶与妊娠及其并发症的关系研究进展[J]. 医学理论与实践, 2022, 35(14): 2372-2374, 2378. https://www.cnki.com.cn/Article/CJFDTOTAL-YXLL202214010.htm
|
[7] |
MORAIS J, MARQUES C, FARIA A, et al. Influence of human milk on very preterms' gut microbiota and alkaline phosphatase activity[J]. Nutrients, 2021, 13(5): 1564. doi: 10.3390/nu13051564
|
[8] |
邵肖梅, 叶鸿瑁, 丘小汕. 实用新生儿学[M]. 4版. 北京: 人民卫生出版社, 2011: 477-483.
|
[9] |
WALSH M C, KLIEGMAN R M. Necrotizing enterocolitis: treatment based on staging criteria[J]. Pediatr Clin North Am, 1986, 33(1): 179-201. doi: 10.1016/S0031-3955(16)34975-6
|
[10] |
王立丹, 黄穗, 陈瑜, 等. 135例新生儿坏死性小肠结肠炎的早期腹部X线诊断分析[J]. 实用临床医药杂志, 2018, 22(17): 119-121. doi: 10.7619/jcmp.201817036
|
[11] |
决珍珍, 宋娟, 张香敏, 等. 新生儿坏死性小肠结肠炎并发神经发育障碍的危险因素研究[J]. 中国全科医学, 2022, 25(18): 2275-2279. https://www.cnki.com.cn/Article/CJFDTOTAL-QKYX202218010.htm
|
[12] |
罗文丽, 赵旸. 晚期早产儿早发型败血症与早产儿脑损伤的相关性研究[J]. 实用临床医药杂志, 2021, 25(3): 51-53, 58. doi: 10.7619/jcmp.20201426
|
[13] |
汪健. 新生儿坏死性小肠结肠炎研究新进展[J]. 临床小儿外科杂志, 2022, 21(4): 301-305. https://www.cnki.com.cn/Article/CJFDTOTAL-LCXR202204001.htm
|
[14] |
张非红, 马娜, 夏斌. 早产儿肠黏膜屏障在新生儿坏死性小肠结肠炎发病机制中的作用[J]. 中华新生儿科杂志: 中英文, 2023, 38(3): 187-190.
|
[15] |
陈希琦, 张晓双, 周永坤, 等. TGF-β1/Smads信号通路在纤维化疾病中的研究进展[J]. 中国中西医结合外科杂志, 2021, 27(2): 351-354. https://www.cnki.com.cn/Article/CJFDTOTAL-ZGZX202102043.htm
|
[16] |
孙洁, 史肖华, 李彩云, 等. 白头翁皂苷B4基于调节巨噬细胞极化对小鼠溃疡性结肠炎的影响[J]. 中国医药导报, 2023, 20(7): 27-31. https://www.cnki.com.cn/Article/CJFDTOTAL-YYCY202307005.htm
|
[17] |
ZHANG X Y, LIU Z M, ZHANG H F, et al. TGF-β1 improves mucosal IgA dysfunction and dysbiosis following intestinal ischaemia-reperfusion in mice[J]. J Cell Mol Med, 2016, 20(6): 1014-1023.
|
[18] |
SANTOS G M, ISMAEL S, MORAIS J, et al. Intestinal alkaline phosphatase: a review of this enzyme role in the intestinal barrier function[J]. Microorganisms, 2022, 10(4): 746.
|
[19] |
万军, 田忠, 姚柏宇, 等. 肠碱性磷酸酶在肠黏膜屏障中的作用[J]. 世界华人消化杂志, 2019, 27(23): 1441-1445. https://www.cnki.com.cn/Article/CJFDTOTAL-CWCN201504018.htm
|
[20] |
ARISE R O, ADETIWA O M, ADEOYE R I, et al. Synergistic enhancement of rat intestinal alkaline phosphatase activity by taurine and sodium butyrate protects against endotoxin-induced bowel inflammation[J]. J Food Biochem, 2022, 46(7): e14123.
|
[21] |
HEATH M, BUCKLEY R, GERBER Z, et al. Association of intestinal alkaline phosphatase with necrotizing enterocolitis among premature infants[J]. JAMA Netw Open, 2019, 2(11): e1914996.
|