ZHU Kairun, XIE Chenglan, YANG Xiaoqian, JIN Wenjie. Research progress of lidocaine in the treatment of cancer pain[J]. Journal of Clinical Medicine in Practice, 2023, 27(22): 131-137. DOI: 10.7619/jcmp.20232163
Citation: ZHU Kairun, XIE Chenglan, YANG Xiaoqian, JIN Wenjie. Research progress of lidocaine in the treatment of cancer pain[J]. Journal of Clinical Medicine in Practice, 2023, 27(22): 131-137. DOI: 10.7619/jcmp.20232163

Research progress of lidocaine in the treatment of cancer pain

More Information
  • Received Date: July 05, 2023
  • Revised Date: September 05, 2023
  • Available Online: December 05, 2023
  • Pain permeates the entire process of cancer, and its mechanism is complex, involving tumor microenvironment, cancer-related bone pain, cancer-related visceral pain, cancer-related neuropathic pain, and surgery and radiotherapy-related factors. Studies have indicated that lidocaine can alleviate intractable cancer pain for opioids, and its mechanism of action in treating various types of cancer pain may also be different, involving the regulation of acid-sensing ion channels (ASICS), transient receptor potential channels (TRP), voltage-gated sodium channels (VGSCs), nerve growth factor (NGF), glutamate and its receptors, inflammatory cells and cytokines, microglia, astrocytes, and high mobility group box 1 protein (HMGB1). This paper reviewed the mechanisms of cancer pain, the mechanisms of lidocaine in treating different types of cancer pain as well as its clinical applications.

  • [1]
    SNIJDERS R A H, BROM L, THEUNISSEN M, et al. Update on prevalence of pain in patients with cancer 2022: a systematic literature review and meta-analysis[J]. Cancers, 2023, 15(3): 591. doi: 10.3390/cancers15030591
    [2]
    VAN DEN BEUKEN-VAN EVERDINGEN M H J, HOCHSTENBACH L M J, JOOSTEN E A J, et al. Update on prevalence of pain in patients with cancer: systematic review and meta-analysis[J]. J Pain Symptom Manage, 2016, 51(6): 1070-1090, e9. doi: 10.1016/j.jpainsymman.2015.12.340
    [3]
    王稳, 樊碧发. 癌痛发生机制的研究进展[J]. 中国疼痛医学杂志, 2021, 27(8): 616-618. doi: 10.3969/j.issn.1006-9852.2021.08.011
    [4]
    武思尹, 马柯. 癌痛治疗中阿片镇痛耐受的研究进展[J]. 中国疼痛医学杂志, 2022, 28(5): 375-378. doi: 10.3969/j.issn.1006-9852.2022.05.010
    [5]
    LEE J T, SANDERSON C R, XUAN W, et al. Lidocaine for cancer pain in adults: a systematic review and meta-analysis[J]. J Palliat Med, 2019, 22(3): 326-334. doi: 10.1089/jpm.2018.0257
    [6]
    SANTONI A, SANTONI M, ARCURI E. Chronic cancer pain: opioids within tumor microenvironment affect neuroinflammation, tumor and pain evolution[J]. Cancers, 2022, 14(9): 2253. doi: 10.3390/cancers14092253
    [7]
    HEUSSER S A, PLESS S A. Acid-sensing ion channels as potential therapeutic targets[J]. Trends Pharmacol Sci, 2021, 42(12): 1035-1050. doi: 10.1016/j.tips.2021.09.008
    [8]
    PARKS S K, MUELLER-KLIESER W, POUYSSÉGUR J. Lactate and acidity in the cancer microenvironment[J]. Annu Rev Cancer Biol, 2020, 4: 141-158. doi: 10.1146/annurev-cancerbio-030419-033556
    [9]
    HUNG C H, CHIN Y, FONG Y O, et al. Acidosis-related pain and its receptors as targets for chronic pain[J]. Pharmacol Ther, 2023, 247: 108444. doi: 10.1016/j.pharmthera.2023.108444
    [10]
    VULLO S, KELLENBERGER S. A molecular view of the function and pharmacology of acid-sensing ion channels[J]. Pharmacol Res, 2020, 154: 104166. doi: 10.1016/j.phrs.2019.02.005
    [11]
    QIAN H Y, ZHOU F, WU R, et al. Metformin attenuates bone cancer pain by reducing TRPV1 and ASIC3 expression[J]. Front Pharmacol, 2021, 12: 713944. doi: 10.3389/fphar.2021.713944
    [12]
    HORISHITA R, OGATA Y, FUKUI R, et al. Local anesthetics inhibit transient receptor potential vanilloid subtype 3 channel function in Xenopus oocytes[J]. Anesth Analg, 2021, 132(6): 1756-1767. doi: 10.1213/ANE.0000000000005546
    [13]
    DOCHERTY R J, GINSBERG L, JADOON S, et al. TRPA1 insensitivity of human sural nerve axons after exposure to lidocaine[J]. Pain, 2013, 154(9): 1569-1577. doi: 10.1016/j.pain.2013.04.030
    [14]
    LIN J, CHU X P, MAYSAMI S, et al. Inhibition of acid sensing ion channel currents by lidocaine in cultured mouse cortical neurons[J]. Anesth Analg, 2011, 112(4): 977-981. doi: 10.1213/ANE.0b013e31820a511c
    [15]
    JING D D, ZHAO Q, ZHAO Y B, et al. Management of pain in patients with bone metastases[J]. Front Oncol, 2023, 13: 1156618. doi: 10.3389/fonc.2023.1156618
    [16]
    LIANG Z J, TAN J, TANG L, et al. NGF monoclonal antibody DS002 alleviates chemotherapy-induced peripheral neuropathy in rats[J]. Acta Pharmacol Sin, 2022, 43(11): 2841-2847. doi: 10.1038/s41401-022-00904-8
    [17]
    WEINKAUF B, OBREJA O, SCHMELZ M, et al. Differential effects of lidocaine on nerve growth factor (NGF)-evoked heat- and mechanical hyperalgesia in humans[J]. Eur J Pain, 2012, 16(4): 543-549. doi: 10.1016/j.ejpain.2011.08.004
    [18]
    ONIZUKA S, SHIRAISHI S, TAMURA R, et al. Lidocaine treatment during synapse reformation periods permanently inhibits NGF-induced excitation in an identified reconstructed synapse of Lymnaea stagnalis[J]. J Anesth, 2012, 26(1): 45-53. doi: 10.1007/s00540-011-1257-6
    [19]
    HERMANNS H, HOLLMANN M W, STEVENS M F, et al. Molecular mechanisms of action of systemic lidocaine in acute and chronic pain: a narrative review[J]. Br J Anaesth, 2019, 123(3): 335-349. doi: 10.1016/j.bja.2019.06.014
    [20]
    SCHEFF N N, YE Y, BHATTACHARYA A, et al. Tumor necrosis factor alpha secreted from oral squamous cell carcinoma contributes to cancer pain and associated inflammation[J]. Pain, 2017, 158(12): 2396-2409. doi: 10.1097/j.pain.0000000000001044
    [21]
    REMENIUK B, KING T, SUKHTANKAR D, et al. Disease modifying actions of interleukin-6 blockade in a rat model of bone cancer pain[J]. Pain, 2018, 159(4): 684-698. doi: 10.1097/j.pain.0000000000001139
    [22]
    CASTRO I, CARVALHO P, VALE N, et al. Systemic anti-inflammatory effects of intravenous lidocaine in surgical patients: a systematic review and meta-analysis[J]. J Clin Med, 2023, 12(11): 3772. doi: 10.3390/jcm12113772
    [23]
    KANBARA T, TOMODA M K, SATO E F, et al. Lidocaine inhibits priming and protein tyrosine phosphorylation of human peripheral neutrophils[J]. Biochem Pharmacol, 1993, 45(8): 1593-1598. doi: 10.1016/0006-2952(93)90299-C
    [24]
    FAZZARI J, LINHER-MELVILLE K, SINGH G. Tumour-derived glutamate: linking aberrant cancer cell metabolism to peripheral sensory pain pathways[J]. Curr Neuropharmacol, 2017, 15(4): 620-636. doi: 10.2174/1570159X14666160509123042
    [25]
    ZHU Y F, LINHER-MELVILLE K, WU J H, et al. Bone cancer-induced pain is associated with glutamate signalling in peripheral sensory neurons[J]. Mol Pain, 2020, 16: 1744806920911536.
    [26]
    ZHUO M. Ionotropic glutamate receptors contribute to pain transmission and chronic pain[J]. Neuropharmacology, 2017, 112(Pt A): 228-234.
    [27]
    NOTARTOMASO S, ANTENUCCI N, LIBERATORE F, et al. Light-induced activation of a specific type-5 metabotropic glutamate receptor antagonist in the ventrobasal thalamus causes analgesia in a mouse model of breakthrough cancer pain[J]. Int J Mol Sci, 2022, 23(14): 8018. doi: 10.3390/ijms23148018
    [28]
    MASIC D, LIANG E, LONG C, et al. Intravenous lidocaine for acute pain: a systematic review[J]. Pharmacotherapy, 2018, 38(12): 1250-1259. doi: 10.1002/phar.2189
    [29]
    LIN T Y, CHUNG C Y, LU C W, et al. Local anesthetics inhibit glutamate release from rat cerebral cortex synaptosomes[J]. Synapse, 2013, 67(9): 568-579. doi: 10.1002/syn.21661
    [30]
    FAZZARI J, LIN H X, MURPHY C, et al. Inhibitors of glutamate release from breast cancer cells; new targets for cancer-induced bone-pain[J]. Sci Rep, 2015, 5: 8380. doi: 10.1038/srep08380
    [31]
    YONEDA T, HIASA M, OKUI T, et al. Cancer-nerve interplay in cancer progression and cancer-induced bone pain[J]. J Bone Miner Metab, 2023, 41(3): 415-427. doi: 10.1007/s00774-023-01401-6
    [32]
    YONEDA T, HIASA M, OKUI T, et al. Sensory nerves: a driver of the vicious cycle in bone metastasis[J]. J Bone Oncol, 2021, 30: 100387. doi: 10.1016/j.jbo.2021.100387
    [33]
    ZAJACZKOWSKA R, KOCOT-KEPSKA M, LEPPERT W, et al. Bone pain in cancer patients: mechanisms and current treatment[J]. Int J Mol Sci, 2019, 20(23): 6047. doi: 10.3390/ijms20236047
    [34]
    SILVERMAN D A, MARTINEZ V K, DOUGHERTY P M, et al. Cancer-associated neurogenesis and nerve-cancer cross-talk[J]. Cancer Res, 2021, 81(6): 1431-1440. doi: 10.1158/0008-5472.CAN-20-2793
    [35]
    BIMONTE S, CASCELLA M, FORTE C A, et al. The role of anti-nerve growth factor monoclonal antibodies in the control of chronic cancer and non-cancer pain[J]. J Pain Res, 2021, 14: 1959-1967. doi: 10.2147/JPR.S302004
    [36]
    BUEHLMANN D, IELACQUA G D, XANDRY J, et al. Prospective administration of anti-nerve growth factor treatment effectively suppresses functional connectivity alterations after cancer-induced bone pain in mice[J]. Pain, 2019, 160(1): 151-159. doi: 10.1097/j.pain.0000000000001388
    [37]
    JI F, ZHANG Y Y, CUI P, et al. Preventive effect of local lidocaine administration on the formation of traumatic neuroma[J]. J Clin Med, 2023, 12(7): 2476. doi: 10.3390/jcm12072476
    [38]
    LI B D, XU H, HE C W, et al. Lidocaine prevents breast cancer growth by targeting neuronatin to inhibit nerve fibers formation[J]. J Toxicol Sci, 2021, 46(7): 329-339. doi: 10.2131/jts.46.329
    [39]
    KOSCIELNIAK-MERAK B, BATKO I, KOBYLARZ K, et al. Intravenous, perioperatively administered lidocaine regulates serum pain modulators' concentrations in children undergoing spinal surgery[J]. Pain Med, 2020, 21(7): 1464-1473. doi: 10.1093/pm/pnz212
    [40]
    CHEN Y L, FENG X L, CHEUNG C W, et al. Mode of action of astrocytes in pain: from the spinal cord to the brain[J]. Prog Neurobiol, 2022, 219: 102365. doi: 10.1016/j.pneurobio.2022.102365
    [41]
    MIDAVAINE É, CÔTÉ J, MARCHAND S, et al. Glial and neuroimmune cell choreography in sexually dimorphic pain signaling[J]. Neurosci Biobehav Rev, 2021, 125: 168-192. doi: 10.1016/j.neubiorev.2021.01.023
    [42]
    HE X T, HU X F, ZHU C, et al. Suppression of histone deacetylases by SAHA relieves bone cancer pain in rats via inhibiting activation of glial cells in spinal dorsal horn and dorsal root Ganglia[J]. J Neuroinflammation, 2020, 17(1): 125. doi: 10.1186/s12974-020-01740-5
    [43]
    MENG W, HAO M M, YU N, et al. 2-Bromopalmitate attenuates bone cancer pain via reversing mitochondrial fusion and fission imbalance in spinal astrocytes[J]. Mol Pain, 2019, 15: 1744806919871813.
    [44]
    YUAN J Q, FEI Y. Lidocaine activates autophagy of astrocytes and ameliorates chronic constriction injury-induced neuropathic pain[J]. J Biochem, 2021, 170(1): 25-31. doi: 10.1093/jb/mvaa136
    [45]
    ZHENG Y, HOU X H, YANG S B. Lidocaine potentiates SOCS3 to attenuate inflammation in microglia and suppress neuropathic pain[J]. Cell Mol Neurobiol, 2019, 39(8): 1081-1092. doi: 10.1007/s10571-019-00703-6
    [46]
    WAKABAYASHI H, WAKISAKA S, HIRAGA T, et al. Decreased sensory nerve excitation and bone pain associated with mouse Lewis lung cancer in TRPV1-deficient mice[J]. J Bone Miner Metab, 2018, 36(3): 274-285. doi: 10.1007/s00774-017-0842-7
    [47]
    ZHANG S L, ZHAO J, MENG Q G. AAV-mediated siRNA against TRPV1 reduces nociception in a rat model of bone cancer pain[J]. Neurol Res, 2019, 41(11): 972-979. doi: 10.1080/01616412.2019.1639317
    [48]
    RIVERA-ACEVEDO R E, PLESS S A, SCHWARZ S K W, et al. Extracellular quaternary ammonium blockade of transient receptor potential vanilloid subtype 1 channels expressed in Xenopus laevis oocytes[J]. Mol Pharmacol, 2012, 82(6): 1129-1135. doi: 10.1124/mol.112.079277
    [49]
    SLOSKY L M, BASSIRIRAD N M, SYMONS A M, et al. The cystine/glutamate antiporter system xc- drives breast tumor cell glutamate release and cancer-induced bone pain[J]. Pain, 2016, 157(11): 2605-2616. doi: 10.1097/j.pain.0000000000000681
    [50]
    VELILLA ECHEVERRI D C, GÓMEZ DÍAZ M, BELTRÁN PACHÓN P, et al. Lidocaine infusion for malignant visceral pain: case report[J]. BMJ Support Palliat Care, 2023: spcare-2023.
    [51]
    LIN Y M, FU Y, WINSTON J, et al. Pathogenesis of abdominal pain in bowel obstruction: role of mechanical stress-induced upregulation of nerve growth factor in gut smooth muscle cells[J]. Pain, 2017, 158(4): 583-592. doi: 10.1097/j.pain.0000000000000797
    [52]
    MA H, PAN Z X, LAI B J, et al. Contribution of immune cells to cancer-related neuropathic pain: an updated review[J]. Mol Pain, 2023, 19: 17448069231182235.
    [53]
    HUARTE O U, RICHART L, MITTELBRONN M, et al. Microglia in health and disease: the strength to be diverse and reactive[J]. Front Cell Neurosci, 2021, 15: 660523. doi: 10.3389/fncel.2021.660523
    [54]
    HAINS B C, WAXMAN S G. Activated microglia contribute to the maintenance of chronic pain after spinal cord injury[J]. J Neurosci, 2006, 26(16): 4308-4317. doi: 10.1523/JNEUROSCI.0003-06.2006
    [55]
    GU Y W, SU D S, TIAN J, et al. Attenuating phosphorylation of p38 MAPK in the activated microglia: a new mechanism for intrathecal lidocaine reversing tactile allodynia following chronic constriction injury in rats[J]. Neurosci Lett, 2008, 431(2): 129-134. doi: 10.1016/j.neulet.2007.11.065
    [56]
    JOO J D, CHOI J W, IN J H, et al. Lidocaine suppresses the increased extracellular signal-regulated kinase/cyclic AMP response element-binding protein pathway and pro-inflammatory cytokines in a neuropathic pain model of rats[J]. Eur J Anaesthesiol, 2011, 28(2): 106-111. doi: 10.1097/EJA.0b013e32834050fb
    [57]
    DE ALMEIDA A S, DE BARROS BERNARDES L, TREVISAN G. TRP channels in cancer pain[J]. Eur J Pharmacol, 2021, 904: 174185. doi: 10.1016/j.ejphar.2021.174185
    [58]
    YANG X, JIA R M, HU F, et al. Promoting AMPK/SR-A1-mediated clearance of HMGB1 attenuates chemotherapy-induced peripheral neuropathy[J]. Cell Commun Signal, 2023, 21(1): 99. doi: 10.1186/s12964-023-01100-9
    [59]
    TREVISAN G, MATERAZZI S, FUSI C, et al. Novel therapeutic strategy to prevent chemotherapy-induced persistent sensory neuropathy by TRPA1 blockade[J]. Cancer Res, 2013, 73(10): 3120-3131. doi: 10.1158/0008-5472.CAN-12-4370
    [60]
    VAN DEN HEUVEL S A S, VAN DER WAL S E I, SMEDES L A, et al. Intravenous lidocaine: old-school drug, new purpose-reduction of intractable pain in patients with chemotherapy induced peripheral neuropathy[J]. Pain Res Manag, 2017, 2017: 8053474.
    [61]
    WANG H L, XING Y Q, XU Y X, et al. The protective effect of lidocaine on septic rats via the inhibition of high mobility group box 1 expression and NF-κB activation[J]. Mediators Inflamm, 2013, 2013: 570370.
    [62]
    ANGHELESCU D L, MORGAN K J, FRETT M J, et al. Lidocaine infusions and reduced opioid consumption-Retrospective experience in pediatric hematology and oncology patients with refractory pain[J]. Pediatr Blood Cancer, 2021, 68(11): e29215. doi: 10.1002/pbc.29215
    [63]
    RAV E, SHETH R, AHMAD A H. Systemic lidocaine infusions for pediatric patients with cancer-related pain[J]. Children, 2022, 9(12): 1934. doi: 10.3390/children9121934
    [64]
    KIANI C S, HUNT R W. Lidocaine continuous subcutaneous infusion for neuropathic pain in hospice patients: safety and efficacy[J]. J Pain Palliat Care Pharmacother, 2021, 35(1): 52-62. doi: 10.1080/15360288.2020.1852357
    [65]
    FERGUSON L, AL RUHEILI J, CLARK H, et al. Subcutaneous lidocaine infusion for complex cancer pain: a retrospective review[J]. J Pain Palliat Care Pharmacother, 2021, 35(3): 137-142. doi: 10.1080/15360288.2021.1920544
    [66]
    PAISLEY P, SERPELL M. The role of topiceuticals in cancer pain[J]. Curr Opin Support Palliat Care, 2017, 11(2): 93-98. doi: 10.1097/SPC.0000000000000271
    [67]
    TSAI J H, LIU I T, SU P F, et al. Lidocaine transdermal patches reduced pain intensity in neuropathic cancer patients already receiving opioid treatment[J]. BMC Palliat Care, 2023, 22(1): 4. doi: 10.1186/s12904-023-01126-3
    [68]
    李成彪. 多药联合泵入治疗终末期患者的中重度癌痛疗效观察[J]. 中国疼痛医学杂志, 2014, 20(4): 287-288. doi: 10.3969/j.issn.1006-9852.2014.04.025
    [69]
    张志春, 邱宾, 王箩, 等. 氢吗啡酮联合咪达唑仑、利多卡因PCA用于难治性癌痛[J]. 中国疼痛医学杂志, 2021, 27(4): 319-320. doi: 10.3969/j.issn.1006-9852.2021.04.017
  • Related Articles

    [1]WANG Pengli, ZHANG Li, BAI Dan, XIE Yan, HUANG Nanxiang. Relationship between serum markers and gastrointestinal function recovery after laparoscopic cholecystectomy in children[J]. Journal of Clinical Medicine in Practice, 2022, 26(22): 111-114. DOI: 10.7619/jcmp.20221301
    [2]ZHAO Zhimin. Effect of early postoperative rehabilitation-enhanced nursing on recovery of gastrointestinal function in hepatic carcinoma patients with open surgery[J]. Journal of Clinical Medicine in Practice, 2019, 23(14): 125-128,132. DOI: 10.7619/jcmp.201914034
    [3]ZHAO Hanjie, ZHANG Lijuan, YANG Lin. Influence of nursing interventions of traditional Chinese medicine on postoperative recovery of gastrointestinal function in patients with gastrointestinal surgery[J]. Journal of Clinical Medicine in Practice, 2019, (2): 116-117,121. DOI: 10.7619/jcmp.201902033
    [4]LIAN Yanping, LI Hongfang. Effect of auricular buried beans combined with moxibustion on promotion of recovery of intestinal function after gastrointestinal surgery[J]. Journal of Clinical Medicine in Practice, 2018, (12): 75-77. DOI: 10.7619/jcmp.201812022
    [5]YA Mingqin, DING Yonghe, ZHAO Xiangyu. Influence of nursing intervention on gastrointestinal function in patients with severe pancreatitis[J]. Journal of Clinical Medicine in Practice, 2018, (6): 40-43. DOI: 10.7619/jcmp.201806012
    [6]YU Huamei, TIAN Haizhen, QIN Limin, SU Yujin. Effect of nursing intervention in operation room on incision healing and complications in patients with gastrointestinal surgery[J]. Journal of Clinical Medicine in Practice, 2016, (18): 111-113. DOI: 10.7619/jcmp.201618036
    [7]DUAN Peifang, YANG Ruixian. Effect of preoperative nursing intervention on recovery of gastrointestinal function after abdominal surgery in the elderly with general anesthesia[J]. Journal of Clinical Medicine in Practice, 2016, (18): 108-110. DOI: 10.7619/jcmp.201618035
    [8]HOU Jianwei. Effect of traditional Chinese medicine combined with western medicine nursing on recovery of gastrointestinal function after laparoscopic cholecystectomy[J]. Journal of Clinical Medicine in Practice, 2016, (12): 79-81. DOI: 10.7619/jcmp.201612025
    [9]WANG Caili, WANG Chunfei, LU Zongjun. Effect of comprehensive nursing on postoperative complications and recovery in patients with craniocerebral operation[J]. Journal of Clinical Medicine in Practice, 2015, (16): 57-59. DOI: 10.7619/jcmp.201516018
    [10]ZHAO Xuehong. Analysis of prospective nursing on the functional recovery and complications in patients with lower limb fracture[J]. Journal of Clinical Medicine in Practice, 2014, (10): 111-112,115. DOI: 10.7619/jcmp.201410040

Catalog

    Article views (138) PDF downloads (18) Cited by()

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return