WU Lili, LIN Jingtao, ZHANG Yuancheng, ZHONG Peimin, TANG Jinsong, WANG Haibo. Mechanisms of mesenchymal stem cell-derived extracellular vesicles in improvement of renal injury in rats with diabetic nephropathy by regulating mammalian target of rapamycin/p70 ribosome protein S6 kinase/coiled-coil myosin-like Bcl-2-interacting protein pathway[J]. Journal of Clinical Medicine in Practice, 2024, 28(10): 51-57. DOI: 10.7619/jcmp.20232784
Citation: WU Lili, LIN Jingtao, ZHANG Yuancheng, ZHONG Peimin, TANG Jinsong, WANG Haibo. Mechanisms of mesenchymal stem cell-derived extracellular vesicles in improvement of renal injury in rats with diabetic nephropathy by regulating mammalian target of rapamycin/p70 ribosome protein S6 kinase/coiled-coil myosin-like Bcl-2-interacting protein pathway[J]. Journal of Clinical Medicine in Practice, 2024, 28(10): 51-57. DOI: 10.7619/jcmp.20232784

Mechanisms of mesenchymal stem cell-derived extracellular vesicles in improvement of renal injury in rats with diabetic nephropathy by regulating mammalian target of rapamycin/p70 ribosome protein S6 kinase/coiled-coil myosin-like Bcl-2-interacting protein pathway

More Information
  • Received Date: September 02, 2023
  • Revised Date: October 11, 2023
  • Available Online: May 31, 2024
  • Objective 

    To explore the mechanisms of mesenchymal stem cell-derived extracellular vesicles (MSC-EVs) in improvement of renal injury in rats with diabetic nephropathy (DN) by regulating mammalian target of rapamycin (mTOR)/p70 ribosome protein S6 kinase (S6K1)/coiled-coil myosin-like Bcl-2-interacting protein (Beclin 1) pathway.

    Methods 

    The model of SD rats with DN was established by a method of high-fat diet combined with intraperitoneal injection of streptozotocin, and they were randomly divided into model group, MSC-EVs group, and MSC-EVs+MHY1485 (mTOR activator) group, with 12 rats in each group. Another 12 SD rats were normally fed for 6 weeks and then intraperitoneally injected with an equal dose of sodium citrate solution as controls. After grouping with MSC-EVs and MHY1485, blood glucose and levels of renal function indicators [blood urea nitrogen (BUN), serum creatinine (Scr), and urinary microalbumin (UmALB)] in rats were detected. HE staining was used to detect the pathological morphology of renal tissue in rats of each group; immunohistochemistry was used to detect the expression of mTOR/S6K1/Beclin 1 pathway related proteins in the renal tissues of rats in each group; the Western blot was used to detect the mTOR/S6K1/Beclin 1 pathway and autophagy-related protein expression in the renal tissues of rats in each group.

    Results 

    Compared with the control group, the renal tissue morphology of rats in the model group were impaired, and the blood glucose, BUN, Scr, UmALB, relative positive expressions of p-mTOR and p-S6K1, p-mTOR/mTOR, p-S6K1/S6K1 increased significantly (P < 0.05), while microtubule associated protein 1A/1B light chain 3 (LC3) Ⅱ/LC3Ⅰ, expression of Beclin 1 protein, and relative positive expression of Beclin 1 significantly reduced (P < 0.05); compared with the model group, the MSC-EVs group had less impairment in the renal tissue morphology, and the blood glucose, BUN, Scr, UmALB, relative positive expressions of p-mTOR and p-S6K1, p-mTOR/mTOR, and p-S6K1/S6K1 decreased significantly (P < 0.05), while expression of LC3Ⅱ/LC3Ⅰ, Beclin 1 protein, and relative positive expression of Beclin 1 increased significantly (P < 0.05); compared with the MSC-EVs group, the impairment of the renal tissue morphology was worse in the MSC-EVs+MHY1485 group, and the blood glucose, BUN, Scr, UmALB, relative positive expressions of p-mTOR and p-S6K1, expression of p-mTOR/mTOR, and p-S6K1/S6K1 increased significantly (P < 0.05), while the expression of LC3Ⅱ/LC3Ⅰ, Beclin 1 protein, and relative positive expression of Beclin 1 decreased significantly (P < 0.05).

    Conclusion 

    MSC-EVs can enhance autophagy, reduce levels of blood glucose, Scr, BUN and urinary protein in rats with DN, alleviate renal tissue damage, and the mechanism may be achieved by inhibiting the activation of the mTOR/S6K1/Beclin 1 pathway.

  • [1]
    HU T Y, YUE J L, TANG Q W, et al. The effect of quercetin on diabetic nephropathy (DN): a systematic review and meta-analysis of animal studies[J]. Food Funct, 2022, 13(9): 4789-4803. doi: 10.1039/D1FO03958J
    [2]
    TU C, WANG L Z, WEI L, et al. The role of circular RNA in Diabetic Nephropathy[J]. Int J Med Sci, 2022, 19(5): 916-923. doi: 10.7150/ijms.71648
    [3]
    JUNG J, PARK W Y, KIM Y J, et al. 3-hydroxybutyrate ameliorates the progression of diabetic nephropathy[J]. Antioxidants, 2022, 11(2): 381. doi: 10.3390/antiox11020381
    [4]
    CHEN K, YU B, LIAO J. LncRNA SOX2OT alleviates mesangial cell proliferation and fibrosis in diabetic nephropathy via Akt/mTOR-mediated autophagy[J]. Mol Med, 2021, 27(1): 71. doi: 10.1186/s10020-021-00310-6
    [5]
    ZHANG X Y, ZHANG L, CHEN Z, et al. Exogenous spermine attenuates diabetic kidney injury inrats by inhibiting AMPK/mTOR signaling pathway[J]. Int J Mol Med, 2021, 47(3): 27. doi: 10.3892/ijmm.2021.4860
    [6]
    WANG X X, SU W, MA M Z, et al. The KLF4-p62 axis prevents vascular endothelial cell injury via the mTOR/S6K pathway and autophagy in diabetic kidney disease[J]. Endokrynol Pol, 2022, 73(5): 837-845. doi: 10.5603/EP.a2022.0072
    [7]
    HAN J R, ZHANG Y G, SHI X J, et al. Tongluo Digui Decoction treats renal injury in diabetic rats by promoting autophagy of podocytes[J]. Chung I Tsa Chih Ying Wen Pan, 2021, 41(1): 125-132.
    [8]
    王秀芬, 肖湘成, 唐文彬. 外泌体在糖尿病肾病中的研究进展[J]. 临床与病理杂志, 2022, 42(12): 3117-3125. doi: 10.3978/j.issn.2095-6959.2022.12.037
    [9]
    万霖, 暴蕾, 雷静. 脐带间充质干细胞来源的凋亡小体和外泌体治疗db/db小鼠糖尿病肾病的临床效果[J]. 临床医学研究与实践, 2022, 7(19): 1-5, 27. https://www.cnki.com.cn/Article/CJFDTOTAL-YLYS202219001.htm
    [10]
    李晓国, 徐明均, 马晨, 等. 人胎盘间充质干细胞来源的外泌体通过增强细胞自噬减轻脂多糖诱导的肺血管内皮细胞损伤[J]. 细胞与分子免疫学杂志, 2021, 37(3): 225-232. https://www.cnki.com.cn/Article/CJFDTOTAL-XBFM202103006.htm
    [11]
    杨帆, 李雅纯, 郭帅, 等. 水蛭冻干粉对糖尿病肾病大鼠瘀血阻络证相关指标的干预作用[J]. 中成药, 2022, 44(9): 3017-3022. doi: 10.3969/j.issn.1001-1528.2022.09.051
    [12]
    陈晶, 刘清岩, 张海宁, 等. 脂肪干细胞来源的外泌体对2型糖尿病肾病大鼠的保护作用[J]. 解剖科学进展, 2020, 26(4): 369-373. https://www.cnki.com.cn/Article/CJFDTOTAL-JPKX202004001.htm
    [13]
    李耕, 蒋晓蕾, 禹红. 基于AMPK/mTOR/NLRP3信号通路探究复方黄柏液对痤疮丙酸杆菌诱导的皮肤炎症的影响[J]. 免疫学杂志, 2022, 38(10): 829-837. https://www.cnki.com.cn/Article/CJFDTOTAL-MYXZ202210001.htm
    [14]
    YANG M, CHEN W, HE L Y, et al. Intermittent fasting-a healthy dietary pattern for diabetic nephropathy[J]. Nutrients, 2022, 14(19): 3995. doi: 10.3390/nu14193995
    [15]
    KIM Y K, NING X Y, MUNIR K M, et al. Emerging drugs for the treatment of diabetic nephropathy[J]. Expert Opin Emerg Drugs, 2022, 27(4): 417-430.
    [16]
    兰薇, 黄瑶玲, 郭静仪, 等. 血清单核细胞趋化蛋白-1与糖尿病肾病进展的关系[J]. 中国临床医生杂志, 2022, 50(3): 286-289. https://www.cnki.com.cn/Article/CJFDTOTAL-ZLYS202203010.htm
    [17]
    赵亚妮, 王君, 赵棉. 血清β2微球蛋白、视黄醇结合蛋白、胱抑素C、中性粒细胞明胶酶相关脂质运载蛋白及基质金属蛋白酶2多指标联合检测在糖尿病肾病患者中的价值[J]. 实用临床医药杂志, 2018, 22(13): 20-23. doi: 10.7619/jcmp.201813006
    [18]
    LI Y, PAN Y, CAO S R, et al. Podocyte EGFR inhibits autophagy through upregulation of Rubicon in type 2 diabetic nephropathy[J]. Diabetes, 2021, 70(2): 562-576.
    [19]
    SU P P, LIU D W, ZHOU S J, et al. Down-regulation of Risa improves podocyte injury by enhancing autophagy in diabetic nephropathy[J]. Mil Med Res, 2022, 9(1): 23.
    [20]
    冯岚, 杨小娟, 陈杨, 等. 糖尿病肾脏病患者肾脏纤维化与YAP活化水平的相关性分析[J]. 空军军医大学学报, 2023, 44(12): 1209-1214. https://www.cnki.com.cn/Article/CJFDTOTAL-DSJY202312012.htm
    [21]
    卞欢, 王颖, 徐寒梅. 外泌体在糖尿病发生发展过程中的作用研究进展[J]. 药学进展, 2019, 43(7): 527-534. https://www.cnki.com.cn/Article/CJFDTOTAL-YXJZ201907006.htm
    [22]
    李想, 张雪晴, 尹天琦, 等. Reg蛋白作为新型药物的研发进展[J]. 药学进展, 2018, 42(3): 231-237. https://www.cnki.com.cn/Article/CJFDTOTAL-YXJZ201803014.htm
    [23]
    张彦清, 石浩, 王家平. 间充质干细胞来源外泌体治疗肾脏疾病的作用机制研究进展[J]. 山东医药, 2022, 62(8): 82-85. https://www.cnki.com.cn/Article/CJFDTOTAL-SDYY202208021.htm
    [24]
    张俊飞, 张舒, 石菲, 等. 模拟微重力处理间充质干细胞应用于干细胞治疗的研究进展[J]. 空军军医大学学报, 2024, 45(2): 221-225. https://www.cnki.com.cn/Article/CJFDTOTAL-DSJY202402018.htm
    [25]
    陈欢, 魏利军. RNA药物非病毒递送系统研究进展[J]. 药学进展, 2022, 46(11): 839-847. https://www.cnki.com.cn/Article/CJFDTOTAL-YXJZ202211004.htm
    [26]
    CHEN L, DAI L H, LIU Y, et al. Yiqi Huoxue recipe regulates autophagy through degradation of advanced glycation end products via mTOR/S6K1/LC3 pathway in diabetic nephropathy[J]. Evid Based Complement Alternat Med, 2021, 2021: 9942678.
    [27]
    吴若霞, 田莎, 熊家青, 等. 甘草酮A通过调节mTOR/HIF-1α途径对顺铂诱导的肾小管上皮细胞的保护作用机制[J]. 中国免疫学杂志, 2023, 39(7): 1420-1424. https://www.cnki.com.cn/Article/CJFDTOTAL-ZMXZ202307037.htm
    [28]
    ABD EL-BASET S A, MAZEN N F, ABDUL-MAKSOUD R S, et al. The therapeutic prospect of zinc oxide nanoparticles in experimentally induced diabetic nephropathy[J]. Tissue Barriers, 2023, 11(1): 2069966.
    [29]
    冉早红. 雷帕霉素和MHY1485对哺乳动物卵母细胞和胚胎发育的影响[D]. 武汉: 华中农业大学, 2022.
  • Related Articles

    [1]YANG Chong, LIU Xiang, CHEN Kehan, WANG Lingli. Mechanism of Bixie Fenqing Pills in improving hyperuricemia induced renal injury by regulating uric acid transporter proteins[J]. Journal of Clinical Medicine in Practice, 2024, 28(18): 1-7. DOI: 10.7619/jcmp.20241968
    [2]CHANG Ailing, ZHAI Yaran, WANG Yujin, ZHANG Jincheng, WANG Fangzhen. Effect of dapagliflozin on vascular function and renal function of patients with diabetic nephropathy[J]. Journal of Clinical Medicine in Practice, 2024, 28(10): 78-82. DOI: 10.7619/jcmp.20234180
    [3]MAO Caifeng, WEI Namin, WANG Taibin, QIAO Yushan, FAN Ruijie, LI Zefa. Correlations of serum eukaryotic translation promoter 2α and activated transcription factor 4 levels with renal tissue injury and renal function in diabetic nephropathy patients[J]. Journal of Clinical Medicine in Practice, 2024, 28(10): 73-77. DOI: 10.7619/jcmp.20233794
    [4]WANG Haitong, LIU Jianliang. Mechanism of naringin on retinal microvascular endothelial cells injury based on adenosine-monophosphate-activated protein kinase/mammalian target of rapamycin pathway[J]. Journal of Clinical Medicine in Practice, 2024, 28(3): 23-28. DOI: 10.7619/jcmp.20233233
    [5]GUO Jing, LI Yunyun, LIU Sisi, SHA Ying, MA Kai, WANG Hong. Values of serum Delta-like protein 4 and cAMP response element-binding protein levels in predicting microvascular injury of patients with different stages of diabetic retinopathy[J]. Journal of Clinical Medicine in Practice, 2023, 27(23): 68-72, 78. DOI: 10.7619/jcmp.20233083
    [6]ZHOU Xinglu, LU Jiancan, MENG Ying, ZHU Hongling. Effects of dapagliflozin on glucolipid metabolism and levels of renal injury markers in patients with type 2 diabetes mellitus[J]. Journal of Clinical Medicine in Practice, 2021, 25(5): 74-78. DOI: 10.7619/jcmp.20201394
    [7]XU Gang. Value of combined detection of urinary albumin-to-creatinine ratio, β2 microglobulin and retinol binding protein in early diagnosis of diabetic nephropathy[J]. Journal of Clinical Medicine in Practice, 2020, 24(21): 86-89. DOI: 10.7619/jcmp.202021025
    [8]ZHANG Junfeng, LIU Shengxian, LI Jie. Value of combined detection of four indicators in diagnosis of early renal injury in elderly patients with essential hypertension[J]. Journal of Clinical Medicine in Practice, 2020, 24(14): 97-99. DOI: 10.7619/jcmp.202014026
    [9]ZHANG Qianqian, HE Ling, TENG Yulian, LV Xiaoyun. Effects of water extract of radix salviae miltiorrhizae on renal injury in rats exposed to cadmium[J]. Journal of Clinical Medicine in Practice, 2017, (5): 5-10. DOI: 10.7619/jcmp.201705002
    [10]SHE Xiaoyin, ZHANG Haibo, MU Juxiang. Early application of continuous renal replacement therapy in acute kidney injury after cardiac surgery[J]. Journal of Clinical Medicine in Practice, 2013, (21): 94-96. DOI: 10.7619/jcmp.201321026

Catalog

    Article views (144) PDF downloads (15) Cited by()

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return