Citation: | ZHANG Junchen, XU Wuhua, ZHONG Li. Effect of lycopene on oxidized low-density lipoprotein induced apoptosis of cerebral vascular endothelial cells by regulating the RAS homologous gene family member A/Rho-related kinase signaling pathway[J]. Journal of Clinical Medicine in Practice, 2023, 27(22): 44-49. DOI: 10.7619/jcmp.20232790 |
To investigate the effect of lycopene (LYC) on the oxidized low-density lipoprotein (ox-LDL) induced apoptosis of cerebral vascular endothelial cells (EC) by regulating the RAS homologous gene family member A (RhoA)/Rho-related kinase (ROCK) signaling pathway.
Human brain microvascular endothelial cells (HBMECs) without any treatments were designed as NC group; the HBMECs treated with ox-LDL were divided into ox-LDL group, LYC group (HBMECs treated with 0.5 μmol/L LYC), lysophosphatidic acid (LPA) group (HBMECs treated with 5 μmol/L RhoA/ROCK signaling pathway activator LPA), and LYC+LPA group (HBMECs treated with 0.5 μmol/L LYC and 5 μmol/L LPA); after 24 hours of treatment, they were used for subsequent experiments. Enzyme-linked immunosorbent assay (ELISA) was used to detect the cytokine levels of HBMECs; CCK-8 method was used to detect the proliferation of HBMECs; flow cytometry was used to detect the apoptosis rate of HBMECs; the Western blot was used to detect the expression levels of platelet endothelial cell adhesion molecule-1 (CD31), smooth muscle (SM) 22α, BCL-2 associated X protein (Bax), B-cell lymphoma/leukemia 2 protein (Bcl-2), cleaved-Caspase-3, and RhoA/ROCK pathway related proteins.
Compared with the NC group, the levels of monocyte chemotactic protein-1 (MCP-1), interleukin-6 (IL-6), vascular endothelial cell adhesion molecule-1 (VCAM-1), apoptosis rate of HBMECs, the Bax, cleaved-Caspase-3, SM22α, RhoA and ROCK1 proteins in the ox-LDL group increased significantly, while the OD value and the levels of Bcl-2 and CD31 proteins decreased significantly (P < 0.05); compared with the ox-LDL group, the levels of MCP-1, IL-6, VCAM-1, apoptosis rate of HBMECs, the Bax, cleaved-Caspase-3, SM22α, RhoA, and ROCK1 proteins in the LYC group decreased significantly, while the OD value and the levels of Bcl-2 and CD31 proteins increased significantly (P < 0.05), but the trends in the LPA group were opposite; LPA weakened the improvement effect of LYC on apoptosis of HBMECs induced by ox-LDL.
LYC may reduce apoptosis of HBMECs by inhibiting the RhoA/ROCK signaling pathway.
[1] |
LIBBY P, RIDKER P M, HANSSON G K. Progress and challenges in translating the biology of atherosclerosis[J]. Nature, 2011, 473(7347): 317-325. doi: 10.1038/nature10146
|
[2] |
COUTO N F, REZENDE L, FERNANDES-BRAGA W, et al. OxLDL alterations in endothelial cell membrane dynamics leads to changes in vesicle trafficking and increases cell susceptibility to injury[J]. Biochim Biophys Acta Biomembr, 2020, 1862(3): 183139. doi: 10.1016/j.bbamem.2019.183139
|
[3] |
PRZYBYLSKA S, TOKARCZYK G. Lycopene in the prevention of cardiovascular diseases[J]. Int J Mol Sci, 2022, 23(4): 1957. doi: 10.3390/ijms23041957
|
[4] |
TANG X Y, YANG X D, PENG Y F, et al. Protective effects of lycopene against H2O2-induced oxidative injury and apoptosis in human endothelial cells[J]. Cardiovasc Drugs Ther, 2009, 23(6): 439-448. doi: 10.1007/s10557-009-6206-3
|
[5] |
GUO W H, HUANG D P, LI S D. Lycopene alleviates oxidative stress-induced cell injury in human vascular endothelial cells by encouraging the SIRT1/Nrf2/HO-1 pathway[J]. Clin Exp Hypertens, 2023, 45(1): 2205051-2205059. doi: 10.1080/10641963.2023.2205051
|
[6] |
LI L Y, YANG Y Y, ZHANG H N, et al. Salidroside ameliorated intermittent hypoxia-aggravated endothelial barrier disruption and atherosclerosis via the cAMP/PKA/RhoA signaling pathway[J]. Front Pharmacol, 2021, 12: 723922. doi: 10.3389/fphar.2021.723922
|
[7] |
BABAAHMADI-REZAEI H, REZAEI M, GHADERI-ZEFREHI H, et al. Reducing proteoglycan synthesis and NOX activity by ROCK inhibitors: therapeutic targets in atherosclerosis[J]. Endocr Metab Immune Disord Drug Targets, 2022, 22(12): 1191-1200. doi: 10.2174/1871530322666220606090801
|
[8] |
王进鹏, 龙启福, 雷延成, 等. lncRNA LINC00339通过下调miR-149-5p表达调控ox-LDL诱导的人脑微血管内皮细胞损伤[J]. 中国病理生理杂志, 2021, 37(2): 277-283. https://www.cnki.com.cn/Article/CJFDTOTAL-ZBLS202102012.htm
|
[9] |
GARCÍA-JIMÉNEZ I, CERVANTES-VILLAGRANA R D, DEL-RÍO-ROBLES J E, et al. Gβγ mediates activation of Rho guanine nucleotide exchange factor ARHGEF17 that promotes metastatic lung cancer progression[J]. J Biol Chem, 2022, 298(1): 101440. doi: 10.1016/j.jbc.2021.101440
|
[10] |
GUO X, GAO M M, WANG Y N, et al. LDL receptor gene-ablated hamsters: a rodent model of familial hypercholesterolemia with dominant inheritance and diet-induced coronary atherosclerosis[J]. EBio Medicine, 2018, 27: 214-224.
|
[11] |
李婧玉, 李琦, 陈畅. 免疫细胞在动脉粥样硬化进程中作用的研究进展[J]. 药学进展, 2023, 47(7): 542-550. doi: 10.20053/j.issn1001-5094.2023.07.009
|
[12] |
ZHAO H, LIU M R, LIU H, et al. Naringin protects endothelial cells from apoptosis and inflammation by regulating the Hippo-YAP Pathway[J]. Biosci Rep, 2020, 40(3): BSR20193431. doi: 10.1042/BSR20193431
|
[13] |
王子欢, 石先贵, 吕建军, 等. 树突状细胞与动脉粥样硬化研究进展[J]. 空军军医大学学报, 2023, 44(8): 765-769. https://www.cnki.com.cn/Article/CJFDTOTAL-DSJY202308017.htm
|
[14] |
张稣亚, 刘红霞, 何朝勇. 血管内皮细胞功能紊乱与动脉粥样硬化研究进展[J]. 药学进展, 2021, 45(10): 775-783. https://www.cnki.com.cn/Article/CJFDTOTAL-YXJZ202110010.htm
|
[15] |
TANG Y, ZHAO J T, SHEN L M, et al. Ox-LDL induces endothelial dysfunction by promoting Arp2/3 complex expression[J]. Biochem Biophys Res Commun, 2016, 475(2): 182-188. doi: 10.1016/j.bbrc.2016.05.068
|
[16] |
HONG D, BAI Y P, GAO H C, et al. Ox-LDL induces endothelial cell apoptosis via the LOX-1-dependent endoplasmic reticulum stress pathway[J]. Atherosclerosis, 2014, 235(2): 310-317. doi: 10.1016/j.atherosclerosis.2014.04.028
|
[17] |
DUAN H, ZHANG Q, LIU J, et al. Suppression of apoptosis in vascular endothelial cell, the promising way for natural medicines to treat atherosclerosis[J]. Pharmacol Res, 2021, 168: 105599. doi: 10.1016/j.phrs.2021.105599
|
[18] |
KHAN U M, SEVINDIK M, ZARRABI A, et al. Lycopene: food sources, biological activities, and human health benefits[J]. Oxid Med Cell Longev, 2021, 2021: 2713511.
|
[19] |
LIU H, LIU J, LIU Z H, et al. Lycopene reduces cholesterol absorption and prevents atherosclerosis in ApoE-/- mice by downregulating HNF-1α and NPC1L1 expression[J]. J Agric Food Chem, 2021, 69(35): 10114-10120. doi: 10.1021/acs.jafc.1c03160
|
[20] |
MANNINO F, PALLIO G, ALTAVILLA D, et al. Atherosclerosis plaque reduction by lycopene is mediated by increased energy expenditure through AMPK and PPARα in ApoE KO mice fed with a high fat diet[J]. Biomolecules, 2022, 12(7): 973. doi: 10.3390/biom12070973
|
[21] |
LIU C, WU J, JIA H Y, et al. Oncostatin M promotes the ox-LDL-induced activation of NLRP3 inflammasomes via the NF-κB pathway in THP-1 macrophages and promotes the progression of atherosclerosis[J]. Ann Transl Med, 2022, 10(8): 456. doi: 10.21037/atm-22-560
|
[22] |
BIAN W H, JING X H, YANG Z Y, et al. Downregulation of LncRNA NORAD promotes Ox-LDL-induced vascular endothelial cell injury and atherosclerosis[J]. Aging, 2020, 12(7): 6385-6400. doi: 10.18632/aging.103034
|
[23] |
SATO Y, WATANABE R, UCHIYAMA N, et al. Inhibitory effects of vasostatin-1 against atherogenesis[J]. Clin Sci, 2018, 132(23): 2493-2507. doi: 10.1042/CS20180451
|
[24] |
SZULCEK R, SANCHEZ-DUFFHUES G, ROL N, et al. Exacerbated inflammatory signaling underlies aberrant response to BMP9 in pulmonary arterial hypertension lung endothelial cells[J]. Angiogenesis, 2020, 23(4): 699-714. doi: 10.1007/s10456-020-09741-x
|
[25] |
GONG L L, LEI Y Y, LIU Y X, et al. Vaccarin prevents ox-LDL-induced HUVEC EndMT, inflammation and apoptosis by suppressing ROS/p38 MAPK signaling[J]. Am J Transl Res, 2019, 11(4): 2140-2154.
|
[26] |
ZHANG B, ZHANG Y F, LI R, et al. miR-217 inhibits apoptosis of atherosclerotic endothelial cells via the TLR4/PI3K/Akt/NF-κB pathway[J]. Eur Rev Med Pharmacol Sci, 2020, 24(24): 12867-12877.
|
[27] |
CAI A P, LI L W, ZHOU Y L. Pathophysiological effects of RhoA and Rho-associated kinase on cardiovascular system[J]. J Hypertens, 2016, 34(1): 3-10. doi: 10.1097/HJH.0000000000000768
|
[28] |
SAWMA T, SHAITO A, NAJM N, et al. Role of RhoA and Rho-associated kinase in phenotypic switching of vascular smooth muscle cells: implications for vascular function[J]. Atherosclerosis, 2022, 358: 12-28. doi: 10.1016/j.atherosclerosis.2022.08.012
|
[29] |
WANG C J, NAN X D, PEI S Y, et al. Salidroside and isorhamnetin attenuate urotensin Ⅱ-induced inflammatory response invivo and invitro: involvement in regulating the RhoA/ROCK Ⅱ pathway[J]. Oncol Lett, 2021, 21(4): 292. doi: 10.3892/ol.2021.12553
|