LI Anqi, ZHAO Peiran, ZHAO Yuqiang, WANG Rui, YANG Jing. Application and prospect of artificial intelligence in metabolic associated fatty liver disease based on bibliometrics[J]. Journal of Clinical Medicine in Practice, 2024, 28(5): 1-9, 16. DOI: 10.7619/jcmp.20233487
Citation: LI Anqi, ZHAO Peiran, ZHAO Yuqiang, WANG Rui, YANG Jing. Application and prospect of artificial intelligence in metabolic associated fatty liver disease based on bibliometrics[J]. Journal of Clinical Medicine in Practice, 2024, 28(5): 1-9, 16. DOI: 10.7619/jcmp.20233487

Application and prospect of artificial intelligence in metabolic associated fatty liver disease based on bibliometrics

More Information
  • Received Date: October 31, 2023
  • Revised Date: December 25, 2023
  • Available Online: March 21, 2024
  • Objective 

    To explore the application and prospects of artificial intelligence (AI) in metabolic associated fatty liver disease (MAFLD) based on bibliometrics.

    Methods 

    Relevant literature on the application of AI technology in MAFLD was retrieved from the Web of Science Core Collection (WoSCC) database. Bibliometric analysis was conducted using CiteSpace, VOSviewer, R package "bibliometrix", and online bibliometric analysis was platformed to identify hotspots and trends in this field.

    Results 

    A total of 303 eligible articles were obtained. Since 2017, the number of papers in this field had experienced explosive growth. The United States was leading the research on the application of AI in MAFLD and was the most frequent participant in international cooperation. San Diego of University of California was the institution with the highest number of publications. Rohit Loomba was the author with the highest number of publications, having published 14 articles. The co-cited keyword clustering labels revealed 10 major clusters: digital image analysis, machine learning, computer-aided diagnosis, fibrosis stage, automated quantitative analysis, metaproteomics, non-invasive diagnosis, ultrasonography, electronic health records, and knowledge representation. Current research on the application of AI in MAFLD mainly focused on the diagnosis, differential diagnosis, and staging of MAFLD. Image recognition and analysis, intelligent assisted diagnosis, AI algorithms, and monitoring disease progression will be important research directions for AI in MAFLD.

    Conclusion 

    Research on the application of AI in MAFLD is experiencing exponential growth. Given enormous potential and clinical application prospects of this field, the application of AI in MAFLD-related areas will remain a research hotspot in the future.

  • [1]
    ESLAM M, NEWSOME P N, SARIN S K, et al. A new definition for metabolic dysfunction-associated fatty liver disease: An international expert consensus statement[J]. J Hepatol, 2020, 73(1): 202-209. doi: 10.1016/j.jhep.2020.03.039
    [2]
    ESLAM M, SANYAL A J, GEORGE J. International Consensus Panel. MAFLD: A Consensus-Driven Proposed Nomenclature for Metabolic Associated Fatty Liver Disease[J]. Gastroenterology, 2020, 158(7): 1999-2014, e1.
    [3]
    李科科, 于文兵, 李硕奇, 等. 基于CiteSpace的大学生社交焦虑研究的热点与前沿趋势分析[J]. 中国全科医学, 2022, 25(33): 4217-4226. doi: 10.12114/j.issn.1007-9572.2022.0390
    [4]
    ZHANG G, SONG J, FENG Z, et al. Artificial intelligence applicated in gastric cancer: A bibliometric and visual analysis via CiteSpace[J]. Front Oncol, 2023, 12: 1075974. doi: 10.3389/fonc.2022.1075974
    [5]
    LI H. Evolutionary Features of Academic Articles Co-keyword Network and Keywords Co-occurrence Network: Based on Two-mode Affiliation Network[J]. Physica A: Statistical Mechanics and its Applications, 2016, 450: 657-669. doi: 10.1016/j.physa.2016.01.017
    [6]
    LIANG Y D, LI Y, ZHAO J, et al. Study of acupuncture for low back pain in recent 20 years: a bibliometric analysis via CiteSpace[J]. J Pain Res, 2017, 10: 951-964. doi: 10.2147/JPR.S132808
    [7]
    PRICE D J S. Little Science, Big Science[M]. New York: Columbia University Press, 1963: 1-31.
    [8]
    杨鑫, 唐庄生, 鱼小军, 等. 近二十年中外文草地遥感研究热点及前沿演进——基于CiteSpace的数据可视化分析[J]. 草地学报, 2021, 29(6): 1136-1147. https://www.cnki.com.cn/Article/CJFDTOTAL-CDXU202106003.htm
    [9]
    LOOMBA R, SEGURITAN V, LI W, et al. Gut Microbiome-Based Metagenomic Signature for Non-invasive Detection of Advanced Fibrosis in Human Nonalcoholic Fatty Liver Disease[J]. Cell Metab, 2017, 25(5): 1054-1062, e5. doi: 10.1016/j.cmet.2017.04.001
    [10]
    CAUSSY C, TRIPATHI A, HUMPHREY G, et al. A gut microbiome signature for cirrhosis due to nonalcoholic fatty liver disease[J]. Nat Commun, 2019, 10(1): 1406. doi: 10.1038/s41467-019-09455-9
    [11]
    CHALASANI N, YOUNOSSI Z, LAVINE J E, et al. The diagnosis and management of nonalcoholic fatty liver disease: Practice guidance from the American Association for the Study of Liver Diseases[J]. Hepatology, United States, 2018, 67: 328-357.
    [12]
    YOUNOSSI Z M, KOENIG A B, ABDELATIF D, et al. Global epidemiology of nonalcoholic fatty liver disease-Meta-analytic assessment of prevalence, incidence, and outcomes[J]. Hepatology, 2016, 64(1): 73-84. doi: 10.1002/hep.28431
    [13]
    YOUNOSSI Z, ANSTEE Q M, MARIETTI M, et al. Global burden of NAFLD and NASH: trends, predictions, risk factors and prevention[J]. Nat Rev Gastroenterol Hepatol, 2018, 15(1): 11-20. doi: 10.1038/nrgastro.2017.109
    [14]
    DULAI P S, SINGH S, PATEL J, et al. Increased risk of mortality by fibrosis stage in nonalcoholic fatty liver disease: Systematic review and meta-analysis[J]. Hepatology, 2017, 65(5): 1557-1565. doi: 10.1002/hep.29085
    [15]
    VILAR-GOMEZ E, CHALASANI N. Non-invasive assessment of non-alcoholic fatty liver disease: Clinical prediction rules and blood-based biomarkers[J]. J Hepatol, 2018, 68(2): 305-315. doi: 10.1016/j.jhep.2017.11.013
    [16]
    YIP T C, MA A J, WONG V W, et al. Laboratory parameter-based machine learning model for excluding non-alcoholic fatty liver disease (NAFLD) in the general population[J]. Aliment Pharmacol Ther, 2017, 46(4): 447-456. doi: 10.1111/apt.14172
    [17]
    ZHU L, BAKER S S, GILL C, et al. Characterization of gut microbiomes in nonalcoholic steatohepatitis (Nash) patients: A connection between endogenous alcohol and Nash[J]. Hepatology, 2013, 57(2): 601-609. doi: 10.1002/hep.26093
    [18]
    GOVAERE O, COCKELL S, TINIAKOS D, et al. Transcriptomic profiling across the nonalcoholic fatty liver disease spectrum reveals gene signatures for steatohepatitis and fibrosis[J]. Sci Transl Med, 2020, 12(572): eaba4448. doi: 10.1126/scitranslmed.aba4448
    [19]
    ESTES C, ANSTEE Q M, ARIAS-LOSTE M T, et al. Modeling NAFLD disease burden in China, France, Germany, Italy, Japan, Spain, United Kingdom, and United States for the period 2016—2030[J]. J Hepatol, 2018, 69(4): 896-904. doi: 10.1016/j.jhep.2018.05.036
    [20]
    CHEN C M, SONG M. Visualizing a field of research: a methodology of systematic scientometric reviews[J]. PLoS One, 2019, 14(10): e0223994. doi: 10.1371/journal.pone.0223994
    [21]
    YOUNOSSI Z, STEPANOVA M, ONG J P, et al. Nonalcoholic Steatohepatitis Is the Fastest Growing Cause of Hepatocellular Carcinoma in Liver Transplant Candidates[J]. Clin Gastroenterol Hepatol, 2019, 17(4): 748-755, e3. doi: 10.1016/j.cgh.2018.05.057
    [22]
    LI Y, WANG X, ZHANG J, et al. Applications of artificial intelligence (AI) in researches on non-alcoholic fatty liver disease(NAFLD): A systematic review[J]. Rev Endocr Metab Disord, 2022, 23(3): 387-400. doi: 10.1007/s11154-021-09681-x
    [23]
    POPA S L, ISMAIEL A, CRISTINA P, et al. Nonalcoholic fatty liver disease: implementing complete automated diagnosis and staging. A systematic review[J]. Diagnostics, 2021(11): 1078.
    [24]
    尹义龙, 袭肖明. 眼科疾病智能诊断方法最新进展[J]. 山东大学学报: 医学版, 2020, 58(11): 33-38. https://www.cnki.com.cn/Article/CJFDTOTAL-SDYB202011006.htm
    [25]
    NOUREDDIN M, GOODMAN Z, TAI D, et al. Machine learning liver histology scores correlate with portal hypertension assessments in nonalcoholic steatohepatitis cirrhosis[J]. Aliment Pharmacol Ther, 2023, 57(4): 409-417. doi: 10.1111/apt.17363
    [26]
    YANG Y, LIU J, SUN C, et al. Nonalcoholic fatty liver disease (NAFLD) detection and deep learning in a Chinese community-based population[J]. Eur Radiol, 2023, 33(8): 5894-5906. doi: 10.1007/s00330-023-09515-1
    [27]
    CUNHA G M, DELGADO T I, MIDDLETON M S, et al. Automated CNN-based analysis versus manual analysis for mr elastography in nonalcoholic fatty liver disease: intermethod agreement and fibrosis stage discriminative performance[J]. AJR Am J Roentgenol, 2022, 219: 224-232. doi: 10.2214/AJR.21.27135
    [28]
    VANDERBECK S, BOCKHORST J, KLEINER D, et al. Automatic quantification of lobular inflammation and hepatocyte ballooning in nonalcoholic fatty liver disease liver biopsies[J]. Hum Pathol, 2015, 46(5): 767-775. doi: 10.1016/j.humpath.2015.01.019
    [29]
    TERAMOTO T, SHINOHARA T, TAKIYAMA A. Computer-aided classification of hepatocellular ballooning in liver biopsies from patienwith NASH using persistent homology[J]. Comput Methods Programs Biomed, 2020, 195: 105614. doi: 10.1016/j.cmpb.2020.105614
    [30]
    TAYLOR-WEINER A, POKKALLA H, HAN L, et al. A machine learning approach enables quantitative measurement of liver histology and disease monitoring in NASH[J]. Hepatology, 2021, 74(1): 133-147. doi: 10.1002/hep.31750
    [31]
    OKANOUE T, SHIMA T, MITSUMOTO Y, et al. Artificial intelligence/neural network system for the screening of nonalcoholic fatty liver disease and nonalcoholic steatohepatitis[J]. Hepatol Res, 2021, 51(5): 554-569. doi: 10.1111/hepr.13628
    [32]
    PERAKAKIS N, POLYZOS S A, YAZDANI A, et al. Non-invasive diagnosis of nonalcoholic steatohepatitis and fibrosis with the use of omics and supervised learning: a proof of concept study[J]. Metabolism, 2019, 101: 154005. doi: 10.1016/j.metabol.2019.154005
    [33]
    CONWAY J, POURYAHYA M, GINDIN Y, et al. Integration of deep learning-based histopathology and transcriptomics reveals key genes associated with fibrogenesis in patients with advanced NASH[J]. Cell Rep Med, 2023, 4(4): 101016. doi: 10.1016/j.xcrm.2023.101016
    [34]
    BAO H, LI J, ZHANG B, et al. Integrated bioinformatics and machine-learning screening for immune-related genes in diagnosing non-alcoholic fatty liver disease with ischemic stroke and RRS1 pan-cancer analysis[J]. Front Immunol, 2023, 14: 1113634. doi: 10.3389/fimmu.2023.1113634
    [35]
    QIN T, GAO X, LEI L, et al. Machine learning- and structure-based discovery of a novel chemotype as FXR agonists for potential treatment of nonalcoholic fatty liver disease[J]. Eur J Med Chem, 2023, 252: 115307. doi: 10.1016/j.ejmech.2023.115307
    [36]
    KAMADA Y, NAKAMURA T, ISOBE S, et al. SWOT analysis of noninvasive tests for diagnosing NAFLD with severe fibrosis: an expert review by the JANIT Forum[J]. J Gastroenterol, 2023, 58(2): 79-97. doi: 10.1007/s00535-022-01932-1
    [37]
    HOLZINGER A, LANGS G, DENK H, et al. Causability and explainability of artifcial intelligence in medicine[J]. Wiley Interdiscip Rev Data Min Knowl Discov, 2019, 9(4): e1312. doi: 10.1002/widm.1312
    [38]
    YIN C, LIU S, WONG V W S, et al. Learning Sparse Interpretable Features For NAS Scoring From Liver Biopsy Images[C]. Proceedings of the Thirty-First International Joint Conference on Artificial Intelligence: International Joint Conferences on Artificial Intelligence Organization, 2022: 1580-1586.
  • Cited by

    Periodical cited type(5)

    1. 陈博婷,崔莹雪,郭小艳. 血清FAM19A5、vitronectin对冠心病合并心力衰竭患者冠状动脉病变程度及主要不良心血管事件的评估价值. 国际检验医学杂志. 2025(02): 191-195+200 .
    2. 张明婷,毛建云,席建芬,韩文杰,李卓琪,赵东坡. 益生菌联合沙库巴曲缬沙坦及胺碘酮对心房颤动射频消融术后近期与远期疗效的影响. 实用临床医药杂志. 2024(09): 45-51 . 本站查看
    3. 王超,陈向红,符秋爱. 脂肪细胞型脂肪酸结合蛋白联合脂联素对冠心病患者预后的预测价值. 实用心脑肺血管病杂志. 2024(08): 19-22 .
    4. 戴玲,周建伟,郑明香,彭兰芳. 基于社会认知理论的冠心病经皮冠状动脉介入术后Ⅱ期远程家庭心脏康复方案的构建. 实用临床医药杂志. 2024(22): 110-114 . 本站查看
    5. 李兴侠,杨晓玮,谢兆媛,闫晶. 2型糖尿病及糖尿病肾病患者肠道菌群失衡模式及其与炎症相关指标之间的相关性分析. 临床和实验医学杂志. 2024(23): 2498-2502 .

    Other cited types(0)

Catalog

    Article views (169) PDF downloads (42) Cited by(5)

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return