SU Qin, WEI Hailin, ZHOU Guohua, ZHANG Ling, ZHANG Pinghu. Lipidomics analysis of medical Marmota himalayana oil[J]. Journal of Clinical Medicine in Practice, 2024, 28(12): 21-25. DOI: 10.7619/jcmp.20233621
Citation: SU Qin, WEI Hailin, ZHOU Guohua, ZHANG Ling, ZHANG Pinghu. Lipidomics analysis of medical Marmota himalayana oil[J]. Journal of Clinical Medicine in Practice, 2024, 28(12): 21-25. DOI: 10.7619/jcmp.20233621

Lipidomics analysis of medical Marmota himalayana oil

More Information
  • Received Date: November 12, 2023
  • Revised Date: April 01, 2024
  • Available Online: June 28, 2024
  • Objective 

    To conduct lipidomics analysis of medical Marmota himalayana oil and explore its potential biological effects.

    Methods 

    Marmota himalayana abdominal fat was heated and refined to produce medical marmot oil. Lipidomics analysis of two batches of Marmota himalayana oil was performed using gas chromatography-mass spectrometry (GC-MS) and ultra-high performance liquid chromatography-mass spectrometry (UPLC-MS). The potential effects of Marmota himalayana oil were analyzed based on the results of lipid composition detection.

    Results 

    GC-MS results showed that the main components of the two batches of Marmota himalayana oil were saturated fatty acids (volume fraction of about 60%) and unsaturated fatty acids (volume fraction of about 30%). The saturated fatty acids were mainly palmitic acid, stearic acid, and arachidic acid, while the unsaturated fatty acids were mainly oleic acid and linoleic acid. There were no significant differences in the volume fraction of various fatty acids between the two batches, indicating that the preparation process of Marmota himalayana oil was stable. The results of UPLC-MS negative ion mode detection showed that Marmota himalayana oil contained 15 saturated fatty acids and 18 unsaturated fatty acids, but there were significant differences in volume fraction between the two batches. The results of UPLC-MS positive ion mode detection showed that Marmota himalayana oil of both batches contained 15 diglycerides and 30 triglycerides.

    Conclusion 

    This study innovatively applies GC-MS and UPLC-MS techniques to analyze the lipidomic components of medical Marmota himalayana oil, providing a reliable basis for subsequent exploration of its pharmacological activity and the establishment of strict quality control standards.

  • [1]
    蒋可, 熊浩明, 靳海晓, 等. 喜马拉雅旱獭生态学研究进展[J]. 中国媒介生物学及控制杂志, 2024, 35(1): 121-127. https://www.cnki.com.cn/Article/CJFDTOTAL-ZMSK202401022.htm
    [2]
    李胜, 靳娟, 何建, 等. 我国喜马拉雅旱獭鼠与南方家鼠鼠疫疫源地鼠疫菌遗传特征研究[J]. 中国热带医学, 2023, 23(9): 916-921. https://www.cnki.com.cn/Article/CJFDTOTAL-RDYX202309005.htm
    [3]
    张评浒, 张玲, 刘昌孝. 核苷类药物线粒体毒性评价模型的研究进展[J]. 中国临床药理学与治疗学, 2020, 25(9): 1059-1065. https://www.cnki.com.cn/Article/CJFDTOTAL-YLZL202009016.htm
    [4]
    张评浒, 周国华, 徐楠, 等. 实验用喜马拉雅旱獭血常规及血生化参考指标的建立[J]. 扬州大学学报: 农业与生命科学版, 2019, 40(5): 70-74. https://www.cnki.com.cn/Article/CJFDTOTAL-JSNX201905012.htm
    [5]
    刘海青, 范微, 张静宵, 等. 喜马拉雅旱獭实验动物化的研究进展[J]. 中国比较医学杂志, 2015, 25(11): 64-68. https://www.cnki.com.cn/Article/CJFDTOTAL-ZGDX201511014.htm
    [6]
    王治军, 岳珊珑, 马英, 等. 喜马拉雅旱獭油治疗烧伤动物模型复制及疗效观察[J]. 动物学杂志, 2000, 35(4): 30-32. https://www.cnki.com.cn/Article/CJFDTOTAL-BIRD200004009.htm
    [7]
    魏小曼. 结直肠腺瘤患者体质分型与肠道菌群及代谢组学的相关性研究[D]. 南京: 南京中医药大学, 2021.
    [8]
    吴鹏. 基于代谢组学技术探讨温经活血外治法对早期膝骨关节炎的干预效应及机制研究[D]. 南京: 南京中医药大学, 2021.
    [9]
    匡浩. 棕榈酸通过CD36活化内质网应激诱导结肠癌铁死亡的机制研究[D]. 武汉: 武汉大学, 2021.
    [10]
    于晓娟. 棕榈酸通过阻滞STAT3信号通路抑制胃癌生长和转移[D]. 合肥: 安徽医科大学, 2021.
    [11]
    LIN L, DING Y, WANG Y, et al. Functional lipidomics: Palmitic acid impairs hepatocellular carcinoma development by modulating membrane fluidity and glucose metabolism[J]. Hepatology, 2017, 66(2): 432-448. doi: 10.1002/hep.29033
    [12]
    LEMAITRE R N, KING I B. Very long-chain saturated fatty acids and diabetes and cardiovascular disease[J]. Curr Opin Lipidol, 2022, 33(1): 76-82. doi: 10.1097/MOL.0000000000000806
    [13]
    HABIB N A, WOOD C B, APOSTOLOV K, et al. Stearic acid and carcinogenesis[J]. Br J Cancer, 1987, 56(4): 455-458. doi: 10.1038/bjc.1987.223
    [14]
    NAVA LAUSON C B, TIBERTI S, CORSETTO P A, et al. Linoleic acid potentiates CD8+ Tcell metabolic fitness and antitumor immunity[J]. Cell Metab, 2023, 35(4): 633-650.e9. doi: 10.1016/j.cmet.2023.02.013
    [15]
    PASCUAL G, DOMÍNGUEZ D, ELOSUA-BAYES M, et al. Dietary palmitic acid promotes a prometastatic memory via Schwann cells[J]. Nature, 2021, 599(7885): 485-490. doi: 10.1038/s41586-021-04075-0
    [16]
    VENØ S K, BORK C S, JAKOBSEN M U, et al. Linoleic acid in adipose tissue and development of ischemic stroke: a Danish case-cohort study[J]. J Am Heart Assoc, 2018, 7(13): e009820. doi: 10.1161/JAHA.118.009820
    [17]
    HAN X L, GROSS R W. Global analyses of cellular lipidomes directly from crude extracts of biological samples by ESI mass spectrometry: a bridge to lipidomics[J]. J Lipid Res, 2003, 44(6): 1071-1079. doi: 10.1194/jlr.R300004-JLR200
    [18]
    LI Q Q, ZHAO Y, ZHU D, et al. Lipidomics profiling of goat milk, soymilk and bovine milk by UPLC-Q-Exactive Orbitrap Mass Spectrometry[J]. Food Chem, 2017, 224: 302-309. doi: 10.1016/j.foodchem.2016.12.083
    [19]
    TU A Q, MA Q, BAI H, et al. A comparative study of triacylglycerol composition in Chinese human milk within different lactation stages and imported infant formula by SFC coupled with Q-TOF-MS[J]. Food Chem, 2017, 221: 555-567. doi: 10.1016/j.foodchem.2016.11.139
    [20]
    LIM D K, MO C, LONG N P, et al. Simultaneous profiling of lysoglycerophospholipids in rice (Oryza sativa L. ) using direct infusion-tandem mass spectrometry with multiple reaction monitoring[J]. J Agric Food Chem, 2017, 65(12): 2628-2634. doi: 10.1021/acs.jafc.7b00148
  • Cited by

    Periodical cited type(18)

    1. 唐琪. 依帕司他联合甲钴胺治疗2型糖尿病周围神经病变的效果. 中外医学研究. 2024(09): 136-139 .
    2. 陈丽媛,林富祥,韦春姣. 依帕司他片+硫辛酸注射液治疗糖尿病周围神经病变的临床效果. 糖尿病新世界. 2024(07): 183-186 .
    3. 李志健. 依帕司他联合胰激肽原酶治疗糖尿病周围神经病变患者的效果. 中国民康医学. 2024(14): 28-30 .
    4. 褚桂克,王凡. 益气养血通痹汤联合甲钴胺注射液治疗糖尿病周围神经病变的疗效及对神经传导速度的影响. 中医研究. 2023(04): 40-44 .
    5. 赵媛媛,高烨,钱光芳. 甲钴胺与丹参多酚酸盐联合治疗糖尿病周围神经病变的效果研究. 糖尿病新世界. 2023(10): 187-190 .
    6. 李彬彬,王民,田勇,楚清锋. 依帕司他联合α-硫辛酸治疗老年糖尿病周围神经病变的临床效果. 实用临床医学. 2022(02): 16-19 .
    7. 尹永锋,李江涛,王润青. 依帕司他与α-硫辛酸分别联合甲钴胺治疗对糖尿病周围神经病变患者氧化应激及神经电生理的影响. 河南医学研究. 2022(06): 1103-1106 .
    8. 王璇. 甲钴胺联合依帕司他治疗糖尿病周围神经病变的效果. 中国实用医药. 2022(15): 152-154 .
    9. 李江敏子,刘殿池,尚菊菊,李景,林玥坤,韩强,张红升. 温经散寒法联合甲钴胺治疗糖尿病周围神经病变的疗效及对血清胱抑素C水平的影响. 中国临床研究. 2022(07): 932-937 .
    10. 徐子奇,于鑫淼,任丽媛. 依帕司他联合甲钴胺治疗糖尿病周围神经病变的疗效. 中国现代药物应用. 2022(17): 154-156 .
    11. 刘锦凤,许凯斯,何燕. 依帕司他片联合二甲双胍治疗糖尿病周围神经病变的疗效分析. 中国处方药. 2022(11): 89-91 .
    12. 康宝清,蔡栋立,洪玮莉. 参芪降糖颗粒治疗糖尿病周围神经病变的临床效果及安全性分析. 糖尿病新世界. 2022(22): 66-69 .
    13. 美娜·斯拉木江,李娜,张明珠,阿衣古丽·阿孜提哈孜. 苍柏逐瘀汤治疗糖尿病周围神经病变痰瘀阻络证临床观察. 山西中医. 2021(04): 19-21+24 .
    14. 谭永华,谭永兰,陈士建. 甲钴胺、依帕司他联合神经血管治疗仪治疗糖尿病周围神经病变的临床效果. 中外医学研究. 2021(21): 51-53 .
    15. 王秀阁,倪青,庞国明. 糖尿病周围神经病变病证结合诊疗指南. 中医杂志. 2021(18): 1648-1656 .
    16. 刘天洋,叶奎. 痛性糖尿病周围神经病药物治疗进展. 中国城乡企业卫生. 2021(12): 45-47 .
    17. 杜凌超,茹志成,孙蕾,陈鹤华. 依帕司他联合硫辛酸治疗糖尿病周围神经病变的临床效果. 慢性病学杂志. 2021(12): 1826-1828+1832 .
    18. 陈晓娟. 血栓通联合依帕司他与甲钴胺在糖尿病周围神经病变中的应用及对神经传导功能的影响. 糖尿病新世界. 2021(21): 195-198 .

    Other cited types(5)

Catalog

    Article views (109) PDF downloads (7) Cited by(23)

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return