REN Zhifang, REN Jie, LIU Rui, XIAO Jinfeng, QIN Jie. Research progress in the correlation between iron metabolism and type 2 diabetes mellitus as well as the regulatory role of glucagon-like peptide-1[J]. Journal of Clinical Medicine in Practice, 2024, 28(7): 138-142,148. DOI: 10.7619/jcmp.20233644
Citation: REN Zhifang, REN Jie, LIU Rui, XIAO Jinfeng, QIN Jie. Research progress in the correlation between iron metabolism and type 2 diabetes mellitus as well as the regulatory role of glucagon-like peptide-1[J]. Journal of Clinical Medicine in Practice, 2024, 28(7): 138-142,148. DOI: 10.7619/jcmp.20233644

Research progress in the correlation between iron metabolism and type 2 diabetes mellitus as well as the regulatory role of glucagon-like peptide-1

More Information
  • Received Date: November 13, 2023
  • Revised Date: February 03, 2024
  • Available Online: April 21, 2024
  • Iron metabolism plays a regulatory role in various metabolic diseases, and excessive iron accumulation can increase the risk of metabolic diseases, especially type 2 diabetes mellitus (T2DM). Pathological processes such as iron deposition, iron overload, and ferroptosis can activate oxidative stress, lipid peroxidation, autophagy, and other processes, promote the amplification of inflammatory reactions and the reduction of antioxidant capacity, gradually decline the function of pancreatic islet β-cells, thereby promoting the occurrence and development of T2DM. Glucagon-like peptide-1 (GLP-1) is a physiological hormone secreted by intestinal L cells. GLP-1 analogs or GLP-1 receptor agonists can regulate the body's iron metabolism process, inhibit iron deposition, iron overload, and ferroptosis-related inflammatory reactions, promote the proliferation and differentiation of pancreatic islet β-cells, thereby reducing insulin resistance, inhibiting endothelial cell damage, and playing an important role in the prevention and treatmentof T2DM and its complications.

  • [1]
    CHEN X, HUANG T T, SHI Y J, et al. A GLP-1 receptor agonist attenuates human islet amyloid polypeptide-induced autophagy and apoptosis in MIN6 cells[J]. Mol Med Rep, 2019, 19(2): 1365-1371.
    [2]
    DE SANCTIS V, SOLIMAN A T, ELSEDFY H, et al. Diabetes and glucose metabolism in thalassemia major: an update[J]. Expert Rev Hematol, 2016, 9(4): 401-408. doi: 10.1586/17474086.2016.1136209
    [3]
    HARRISON A V, LORENZO F R, MCCLAIN D A. Iron and the pathophysiology of diabetes[J]. Annu Rev Physiol, 2023, 85: 339-362. doi: 10.1146/annurev-physiol-022522-102832
    [4]
    MARKU A, GALLI A, MARCIANI P, et al. Iron metabolism in pancreatic beta-cell function and dysfunction[J]. Cells, 2021, 10(11): 2841. doi: 10.3390/cells10112841
    [5]
    吴晗, 于淼, 肖诚, 等. 铁过载及铁死亡与代谢相关脂肪性肝病的研究进展[J]. 中华糖尿病杂志, 2021, 13(8): 836-840.
    [6]
    KANBOUR I, CHANDRA P, SOLIMAN A, et al. Severe liver iron concentrations (LIC) in 24 patients with β-thalassemia major: correlations with serum ferritin, liver enzymes and endocrine complications[J]. Mediterr J Hematol Infect Dis, 2018, 10(1): e2018062.
    [7]
    SHU T T, LV Z G, XIE Y C, et al. Hepcidin as a key iron regulator mediates glucotoxicity-induced pancreatic β-cell dysfunction[J]. Endocr Connect, 2019, 8(3): 150-161. doi: 10.1530/EC-18-0516
    [8]
    MIAO R Y, FANG X Y, ZHANG Y J, et al. Iron metabolism and ferroptosis in type 2 diabetes mellitus and complications: mechanisms and therapeutic opportunities[J]. Cell Death Dis, 2023, 14(3): 186. doi: 10.1038/s41419-023-05708-0
    [9]
    PINTI M V, FINK G K, HATHAWAY Q A, et al. Mitochondrial dysfunction in type 2 diabetes mellitus: an organ-based analysis[J]. Am J Physiol Endocrinol Metab, 2019, 316(2): E268-E285. doi: 10.1152/ajpendo.00314.2018
    [10]
    ALTAMURA S, MVDDER K, SCHLOTTERER A, et al. Iron aggravates hepatic insulin resistance in the absence of inflammation in a novel db/db mouse model with iron overload[J]. Mol Metab, 2021, 51: 101235. doi: 10.1016/j.molmet.2021.101235
    [11]
    ALTAMURA S, KOPF S, SCHMIDT J, et al. Uncoupled iron homeostasis in type 2 diabetes mellitus[J]. J Mol Med, 2017, 95(12): 1387-1398. doi: 10.1007/s00109-017-1596-3
    [12]
    VILA CUENCA M, MARCHI G, BARQUÉA, et al. Genetic and clinical heterogeneity in thirteen new cases with aceruloplasminemia. atypical Anemia as a clue for an early diagnosis[J]. Int J Mol Sci, 2020, 21(7): 2374. doi: 10.3390/ijms21072374
    [13]
    WU X G, LI Y, ZHANG S C, et al. Ferroptosis as a novel therapeutic target for cardiovascular disease[J]. Theranostics, 2021, 11(7): 3052-3059. doi: 10.7150/thno.54113
    [14]
    ESHAK E S, ISO H, MARUYAMA K, et al. Associations between dietary intakes of iron, copper and zinc with risk of type 2 diabetes mellitus: a large population-based prospective cohort study[J]. Clin Nutr, 2018, 37(2): 667-674. doi: 10.1016/j.clnu.2017.02.010
    [15]
    COFFEY R, KNUTSON M D. The plasma membrane metal-ion transporter ZIP14 contributes to nontransferrin-bound iron uptake by human β-cells[J]. Am J Physiol Cell Physiol, 2017, 312(2): C169-C175. doi: 10.1152/ajpcell.00116.2016
    [16]
    JAHNG J W S, ALSAADI R M, PALANIVEL R, et al. Iron overload inhibits late stage autophagic flux leading to insulin resistance[J]. EMBO Rep, 2019, 20(10): e47911. doi: 10.15252/embr.201947911
    [17]
    ZHOU Y. The Protective Effects of Cryptochlorogenic Acid on β-Cells Function in Diabetes in vivo and vitro via Inhibition of Ferroptosis[J]. Diabetes Metab Syndr Obes, 2020, 13: 1921-1931. doi: 10.2147/DMSO.S249382
    [18]
    BRUNI A, PEPPER A R, PAWLICK R L, et al. Ferroptosis-inducing agents compromise in vitro human islet viability and function[J]. Cell Death Dis, 2018, 9(6): 595. doi: 10.1038/s41419-018-0506-0
    [19]
    SHA W X, HU F, XI Y, et al. Mechanism of ferroptosis and its role in type 2 diabetes mellitus[J]. J Diabetes Res, 2021, 2021: 9999612.
    [20]
    ZHENG Y F, HU Q S, WU J L. Adiponectin ameliorates placental injury in gestational diabetes mice by correcting fatty acid oxidation/peroxide imbalance-induced ferroptosis via restoration of CPT-1 activity[J]. Endocrine, 2022, 75(3): 781-793. doi: 10.1007/s12020-021-02933-5
    [21]
    DU Q Q, WU X Y, MA K, et al. Silibinin alleviates ferroptosis of rat islet β cell INS-1 induced by the treatment with palmitic acid and high glucose through enhancing PINK1/parkin-mediated mitophagy[J]. Arch Biochem Biophys, 2023, 743: 109644. doi: 10.1016/j.abb.2023.109644
    [22]
    ZHANG X H, JIANG L P, CHEN H B, et al. Resveratrol protected acrolein-induced ferroptosis and insulin secretion dysfunction via ER-stress- related PERK pathway in MIN6 cells[J]. Toxicology, 2022, 465: 153048. doi: 10.1016/j.tox.2021.153048
    [23]
    CHEN X P, LI H W, WANG Z Q, et al. Quercetin protects the vascular endothelium against iron overload damages via ROS/ADMA/DDAHⅡ/eNOS/NO pathway[J]. Eur J Pharmacol, 2020, 868: 172885. doi: 10.1016/j.ejphar.2019.172885
    [24]
    HU W L, LIANG K H, ZHU H, et al. Ferroptosis and its role in chronic diseases[J]. Cells, 2022, 11(13): 2040. doi: 10.3390/cells11132040
    [25]
    FANG X X, CAI Z X, WANG H, et al. Loss of cardiac ferritin H facilitates cardiomyopathy via Slc7a11-mediated ferroptosis[J]. Circ Res, 2020, 127(4): 486-501. doi: 10.1161/CIRCRESAHA.120.316509
    [26]
    WEILAND A, WANG Y M, WU W H, et al. Ferroptosis and its role in diverse brain diseases[J]. Mol Neurobiol, 2019, 56(7): 4880-4893. doi: 10.1007/s12035-018-1403-3
    [27]
    BAI T, LI M X, LIU Y F, et al. Inhibition of ferroptosis alleviates atherosclerosis through attenuating lipid peroxidation and endothelial dysfunction in mouse aortic endothelial cell[J]. Free Radic Biol Med, 2020, 160: 92-102. doi: 10.1016/j.freeradbiomed.2020.07.026
    [28]
    LATUNDE-DADA G O. Ferroptosis: role of lipid peroxidation, iron and ferritinophagy[J]. Biochim Biophys Acta Gen Subj, 2017, 1861(8): 1893-1900. doi: 10.1016/j.bbagen.2017.05.019
    [29]
    LUO E F, LI H X, QIN Y H, et al. Role of ferroptosis in the process of diabetes-induced endothelial dysfunction[J]. World J Diabetes, 2021, 12(2): 124-137. doi: 10.4239/wjd.v12.i2.124
    [30]
    ALSHWAIYAT N M, AHMAD A, WAN HASSAN W M R, et al. Association between obesity and iron deficiency (Review)[J]. Exp Ther Med, 2021, 22(5): 1268. doi: 10.3892/etm.2021.10703
    [31]
    PARMANAND B A, KELLINGRAY L, LE GALL G, et al. A decrease in iron availability to human gut microbiome reduces the growth of potentially pathogenic gut bacteria; an in vitro colonic fermentation study[J]. J Nutr Biochem, 2019, 67: 20-27. doi: 10.1016/j.jnutbio.2019.01.010
    [32]
    LAUDISIO D, DE ALTERIIS G, VETRANI C, et al. Iron levels and markers of inflammation in a population of adults with severe obesity, a cross-sectional study[J]. Nutrients, 2023, 15(21): 4702. doi: 10.3390/nu15214702
    [33]
    PACKER M. Alleviation of functional iron deficiency by SGLT2 inhibition in patients with type 2 diabetes[J]. Diabetes Obes Metab, 2023, 25(5): 1143-1146. doi: 10.1111/dom.14963
    [34]
    纪立农. 胰高糖素样肽-1受体激动剂改善代谢综合征的临床应用研究进展[J]. 中华糖尿病杂志, 2023, 15(12): 1177-1184.
    [35]
    MAYENDRARAJ A, ROSENKILDE M M, GASBJERG L S. GLP-1 and GIP receptor signaling in beta cells - A review of receptor interactions and co-stimulation[J]. Peptides, 2022, 151: 170749. doi: 10.1016/j.peptides.2022.170749
    [36]
    MARINHO T S, MARTINS F F, CARDOSO L E M, et al. Pancreatic islet cells disarray, apoptosis, and proliferation in obese mice. The role of Semaglutide treatment[J]. Biochimie, 2022, 193: 126-136. doi: 10.1016/j.biochi.2021.10.017
    [37]
    WEI R, HONG T P. Glucagon-like peptide-1 promotes α-to-β cell transdifferentiation: how far is it from clinical application[J]. Diabetes Metab, 2019, 45(6): 601-602. doi: 10.1016/j.diabet.2019.01.003
    [38]
    CARDOSO L E M, MARINHO T S, MARTINS F F, et al. Treatment with semaglutide, a GLP-1 receptor agonist, improves extracellular matrix remodeling in the pancreatic islet of diet-induced obese mice[J]. Life Sci, 2023, 319: 121502. doi: 10.1016/j.lfs.2023.121502
    [39]
    YARIBEYGI H, SATHYAPALAN T, SAHEBKAR A. Molecular mechanisms by which GLP-1 RA and DPP-4i induce insulin sensitivity[J]. Life Sci, 2019, 234: 116776. doi: 10.1016/j.lfs.2019.116776
    [40]
    RODRIGUES T, BORGES P, MAR L, et al. GLP-1 improves adipose tissue glyoxalase activity and capillarization improving insulin sensitivity in type 2 diabetes[J]. Pharmacol Res, 2020, 161: 105198. doi: 10.1016/j.phrs.2020.105198
    [41]
    SIMENTAL-MENDÍA L E, SÁNCHEZ-GARCÍA A, LINDEN-TORRES E, et al. Impact of glucagon-like peptide-1 receptor agonists on adiponectin concentrations: a meta-analysis of randomized controlled trials[J]. Brit J Clinical Pharma, 2021, 87(11): 4140-4149. doi: 10.1111/bcp.14855
    [42]
    IGOILLO-ESTEVE M, OLIVEIRA A F, COSENTINO C, et al. Exenatide induces frataxin expression and improves mitochondrial function in Friedreich ataxia[J]. JCI Insight, 2020, 5(2): e134221. doi: 10.1172/jci.insight.134221
    [43]
    SONG J X, AN J R, CHEN Q, et al. Liraglutide attenuates hepatic iron levels and ferroptosis in db/db mice[J]. Bioengineered, 2022, 13(4): 8334-8348. doi: 10.1080/21655979.2022.2051858
    [44]
    LEE H, ZANDKARIMI F, ZHANG Y L, et al. Energy-stress-mediated AMPK activation inhibits ferroptosis[J]. Nat Cell Biol, 2020, 22(2): 225-234. doi: 10.1038/s41556-020-0461-8
    [45]
    GUO T L, YAN W H, CUI X, et al. Liraglutide attenuates type 2 diabetes mellitus-associated non-alcoholic fatty liver disease by activating AMPK/ACC signaling and inhibiting ferroptosis[J]. Mol Med, 2023, 29(1): 132. doi: 10.1186/s10020-023-00721-7
    [46]
    AN J R, SU J N, SUN G Y, et al. Liraglutide alleviates cognitive deficit in db/db mice: involvement in oxidative stress, iron overload, and ferroptosis[J]. Neurochem Res, 2022, 47(2): 279-294. doi: 10.1007/s11064-021-03442-7
    [47]
    WANG J, WU J, WU H, et al. Liraglutide protects pancreatic β-cells against free fatty acids in vitro and affects glucolipid metabolism in apolipoprotein E-/- mice by activating autophagy[J]. Mol Med Rep, 2015, 12(3): 4210-4218. doi: 10.3892/mmr.2015.3944
    [48]
    胡珂昕, 唐珑佳, 章辉, 等. 胰高糖素样肽-1改善晚期糖基化终末产物诱导人主动脉内皮细胞铁死亡的机制研究[J]. 中华糖尿病杂志, 2023, 15(5): 409-415.
  • Related Articles

    [1]LI Nan, LI Jian, WANG Congxiao, FAN Zhijiao, QIE Shuyan. Effect of virtual reality balance training on knee joint function after anteriorcruciate ligament reconstruction[J]. Journal of Clinical Medicine in Practice, 2022, 26(22): 7-11. DOI: 10.7619/jcmp.20222483
    [2]SHAN Hui, WANG Ying. Effect of pain management in lower limb function recovery of patients undergoing knee arthroplasty[J]. Journal of Clinical Medicine in Practice, 2019, 23(23): 104-106. DOI: 10.7619/jcmp.201923032
    [3]GAO Huanxiong, ZHANG Ruixia. Effect of pain control nursing on postoperative knee joint function in knee joint fracture patients[J]. Journal of Clinical Medicine in Practice, 2019, 23(15): 122-125. DOI: 10.7619/jcmp.201915034
    [4]HAO Yanfang, XU Xiaomei. The effect of pathway nursing measures on swelling, pain and functional recovery after total knee replacement[J]. Journal of Clinical Medicine in Practice, 2017, (16): 75-78. DOI: 10.7619/jcmp.201716024
    [5]QIAN Yan, WANG Haiyan, ZHOU Ling. Application effect of staged rehabilitation guidance program in rehabilitation of patients after total knee replacement[J]. Journal of Clinical Medicine in Practice, 2017, (2): 101-104. DOI: 10.7619/jcmp.201702032
    [6]REN Xiaohua. Effects of clinical nursing pathway on postoperative pain and functional rehabilitation of patients with total knee arthroplasty[J]. Journal of Clinical Medicine in Practice, 2016, (16): 132-135. DOI: 10.7619/jcmp.201616040
    [7]CHEN Yong, LIU Jingmei, LI Hong, FENG Yingjie, ZHANG Ping. Effect of nursing intervention on postoperative recovery of knee joint function of patients with patella fracture[J]. Journal of Clinical Medicine in Practice, 2016, (4): 97-99. DOI: 10.7619/jcmp.201604030
    [8]DU Lijuan. Effect of modular rehabilitation program on the functional rehabilitation of knee joint in tibial plateau fracture patients[J]. Journal of Clinical Medicine in Practice, 2016, (4): 93-96. DOI: 10.7619/jcmp.201604029
    [9]HE Kui, SHEN Liying, GUO Xuemei. Influence of pain management on the postoperative pain and rehabilitation of patients undergoing total knee arthroplasty[J]. Journal of Clinical Medicine in Practice, 2015, (6): 135-137. DOI: 10.7619/jcmp.201506045
    [10]FENG Yongqin, SONG Guangyu, HUO Yanqiao, ZHANG Zhirong. Maintenance of motor function of knee joint and rehabilitation nursing in patients with burn[J]. Journal of Clinical Medicine in Practice, 2013, (6): 94-96. DOI: 10.7619/jcmp.201306033
  • Cited by

    Periodical cited type(1)

    1. 郑潇潇,李鑫月,于晓兰,史小京. 人工流产术前患者焦虑抑郁现状及影响因素调查. 生殖医学杂志. 2023(12): 1790-1797 .

    Other cited types(0)

Catalog

    Article views (147) PDF downloads (11) Cited by(1)

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return