Citation: | WANG Mengran, YOU Xiaochen, XU Xingli, DAI Hongyan, GUAN Jun. Advances for ferroptosis in treating myocardial ischemia reperfusion injury[J]. Journal of Clinical Medicine in Practice, 2024, 28(9): 123-128, 133. DOI: 10.7619/jcmp.20240372 |
Ferroptosis, a new form of programmed cell death marked by iron-dependent phospholipid peroxidation, is regulated by complex cellular metabolic pathways, including iron metabolism, lipid metabolism, and oxidation-reduction system, is associated with many organ injuries and degeneration, and has great potential in the treatment of ischemic diseases and lipid peroxide-related degenerative diseases. Myocardial ischemia reperfusion injury (MIRI) is the most common cause of death in patients with acute myocardial infarction after revascularization therapy. Recent studies have shown that ferroptosis is intimately related to the pathological process of MIRI. Ferroptosis is associated with MIRI through oxidative stress, iron metabolism, lipid metabolism, endoplasmic reticulum stress and inflammatory response. Intervention of ferroptosis during reperfusion can effectively improve cardiac function and reduce myocardial infarct size. In this paper, the research progress was explored between ferroptosis and MIRI, and the specific role of ferroptosis in MIRI was discussed.
[1] |
PREM P N, SIVAKUMAR B, BOOVARAHAN S R, et al. Recent advances in potential of Fisetin in the management of myocardial ischemia-reperfusion injury-a systematic review[J]. Phytomedicine, 2022, 101: 154123. doi: 10.1016/j.phymed.2022.154123
|
[2] |
ZHAO W K, ZHOU Y, XU T T, et al. Ferroptosis: opportunities and challenges in myocardial ischemia-reperfusion injury[J]. Oxid Med Cell Longev, 2021, 2021: 9929687.
|
[3] |
YANG X, HUANG T Y, CHEN Y H, et al. Deoxynivalenol induces testicular ferroptosis by regulating the Nrf2/System Xc-/GPX4 axis[J]. Food Chem Toxicol, 2023, 175: 113730. doi: 10.1016/j.fct.2023.113730
|
[4] |
CUI Y, ZHANG Z L, ZHOU X, et al. Microglia and macrophage exhibit attenuated inflammatory response and ferroptosis resistance after RSL3 stimulation via increasing Nrf2 expression[J]. J Neuroinflammation, 2021, 18(1): 249. doi: 10.1186/s12974-021-02231-x
|
[5] |
MA S X, SUN L Y, WU W H, et al. USP22 protects against myocardial ischemia-reperfusion injury via the SIRT1-p53/SLC7A11-dependent inhibition of ferroptosis-induced cardiomyocyte death[J]. Front Physiol, 2020, 11: 551318. doi: 10.3389/fphys.2020.551318
|
[6] |
XUE Q, YAN D, CHEN X, et al. Copper-dependent autophagic degradation of GPX4 drives ferroptosis[J]. Autophagy, 2023, 19(7): 1982-1996. doi: 10.1080/15548627.2023.2165323
|
[7] |
LI W T, LIANG L, LIU S Y, et al. FSP1: a key regulator of ferroptosis[J]. Trends Mol Med, 2023, 29(9): 753-764. doi: 10.1016/j.molmed.2023.05.013
|
[8] |
MAO C, LIU X G, ZHANG Y L, et al. DHODH-mediated ferroptosis defence is a targetable vulnerability in cancer[J]. Nature, 2021, 593(7860): 586-590. doi: 10.1038/s41586-021-03539-7
|
[9] |
HU Q, WEI W H, WU D Q, et al. Blockade of GCH1/BH4 axis activates ferritinophagy to mitigate the resistance of colorectal cancer to erastin-induced ferroptosis[J]. Front Cell Dev Biol, 2022, 10: 810327. doi: 10.3389/fcell.2022.810327
|
[10] |
CHEN Y F, LI X T, WANG S Y, et al. Targeting iron metabolism and ferroptosis as novel therapeutic approaches in cardiovascular diseases[J]. Nutrients, 2023, 15(3): 591. doi: 10.3390/nu15030591
|
[11] |
TIAN H, XIONG Y H, ZHANG Y, et al. Activation of NRF2/FPN1 pathway attenuates myocardial ischemia-reperfusion injury in diabetic rats by regulating iron homeostasis and ferroptosis[J]. Cell Stress Chaperones, 2021, 27(2): 149-164.
|
[12] |
WU H, LIU Q, SHAN X Y, et al. ATM orchestrates ferritinophagy and ferroptosis by phosphorylating NCOA4[J]. Autophagy, 2023, 19(7): 2062-2077. doi: 10.1080/15548627.2023.2170960
|
[13] |
FANG Y Y, CHEN X C, TAN Q Y, et al. Inhibiting ferroptosis through disrupting the NCOA4-FTH1 interaction: a new mechanism of action[J]. ACS Cent Sci, 2021, 7(6): 980-989. doi: 10.1021/acscentsci.0c01592
|
[14] |
LIANG D G, FENG Y, ZANDKARIMI F, et al. Ferroptosis surveillance independent of GPX4 and differentially regulated by sex hormones[J]. Cell, 2023, 186(13): 2748-2764, e22. doi: 10.1016/j.cell.2023.05.003
|
[15] |
JIANG X J, STOCKWELL B R, CONRAD M. Ferroptosis: mechanisms, biology and role in disease[J]. Nat Rev Mol Cell Biol, 2021, 22(4): 266-282. doi: 10.1038/s41580-020-00324-8
|
[16] |
LIU J, KANG R, TANG D L. Signaling pathways and defense mechanisms of ferroptosis[J]. FEBS J, 2022, 289(22): 7038-7050. doi: 10.1111/febs.16059
|
[17] |
DOLL S, PRONETH B, TYURINA Y Y, et al. ACSL4 dictates ferroptosis sensitivity by shaping cellular lipid composition[J]. Nat Chem Biol, 2017, 13(1): 91-98. doi: 10.1038/nchembio.2239
|
[18] |
TANG D L, KROEMER G. Peroxisome: the new player in ferroptosis[J]. Signal Transduct Target Ther, 2020, 5(1): 273. doi: 10.1038/s41392-020-00404-3
|
[19] |
刘丹勇, 夏正远, 韩荣辉, 等. 心肌缺血再灌注损伤机制研究的回顾与展望[J]. 中国动脉硬化杂志, 2020, 28(12): 1013-1019. https://www.cnki.com.cn/Article/CJFDTOTAL-KDYZ202012002.htm
|
[20] |
RODRIGO R, GONZÁLEZ-MONTERO J, SOTOMAYOR C G. Novel combined antioxidant strategy against hypertension, acute myocardial infarction and postoperative atrial fibrillation[J]. Biomedicines, 2021, 9(6): 620. doi: 10.3390/biomedicines9060620
|
[21] |
ZINDEL J, KUBES P. DAMPs, PAMPs, and LAMPs in immunity and sterile inflammation[J]. Annu Rev Pathol, 2020, 15: 493-518. doi: 10.1146/annurev-pathmechdis-012419-032847
|
[22] |
WANG J, LIU Y, LIU Y, et al. Recent advances in nanomedicines for imaging and therapy of myocardial ischemia-reperfusion injury[J]. J Control Release, 2023, 353: 563-590. doi: 10.1016/j.jconrel.2022.11.057
|
[23] |
HEUSCH G. Myocardial ischaemia-reperfusion injury and cardioprotection in perspective[J]. Nat Rev Cardiol, 2020, 17(12): 773-789. doi: 10.1038/s41569-020-0403-y
|
[24] |
IBÁÑEZ B, HEUSCH G, OVIZE M, et al. Evolving therapies for myocardial ischemia/reperfusion injury[J]. J Am Coll Cardiol, 2015, 65(14): 1454-1471. doi: 10.1016/j.jacc.2015.02.032
|
[25] |
SPARVERO L J, TIAN H, AMOSCATO A A, et al. Direct mapping of phospholipid ferroptotic death signals in cells and tissues by gas cluster ion beam secondary ion mass spectrometry (GCIB-SIMS)[J]. Angew Chem Int Ed, 2021, 60(21): 11784-11788. doi: 10.1002/anie.202102001
|
[26] |
TANG L J, LUO X J, TU H, et al. Ferroptosis occurs in phase of reperfusion but not ischemia in rat heart following ischemia or ischemia/reperfusion[J]. Naunyn Schmiedebergs Arch Pharmacol, 2021, 394(2): 401-410. doi: 10.1007/s00210-020-01932-z
|
[27] |
YAN H F, ZOU T, TUO Q Z, et al. Ferroptosis: mechanisms and links with diseases[J]. Signal Transduct Target Ther, 2021, 6(1): 49. doi: 10.1038/s41392-020-00428-9
|
[28] |
LV Z Q, WANG F E, ZHANG X F, et al. Etomidate attenuates the ferroptosis in myocardial ischemia/reperfusion rat model via Nrf2/HO-1 pathway[J]. Shock, 2021, 56(3): 440-449. doi: 10.1097/SHK.0000000000001751
|
[29] |
KWON M Y, PARK E, LEE S J, et al. Heme oxygenase-1 accelerates erastin-induced ferroptotic cell death[J]. Oncotarget, 2015, 6(27): 24393-24403. doi: 10.18632/oncotarget.5162
|
[30] |
FAN Z Y, CAI L L, WANG S N, et al. Baicalin prevents myocardial ischemia/reperfusion injury through inhibiting ACSL4 mediated ferroptosis[J]. Front Pharmacol, 2021, 12: 628988. doi: 10.3389/fphar.2021.628988
|
[31] |
LI W Y, LI W, WANG Y, et al. Inhibition of DNMT-1 alleviates ferroptosis through NCOA4 mediated ferritinophagy during diabetes myocardial ischemia/reperfusion injury[J]. Cell Death Discov, 2021, 7(1): 267. doi: 10.1038/s41420-021-00656-0
|
[32] |
LEI D Y, LI B, ISA Z, et al. Hypoxia-elicited cardiac microvascular endothelial cell-derived exosomal miR-210-3p alleviate hypoxia/reoxygenation-induced myocardial cell injury through inhibiting transferrin receptor 1-mediated ferroptosis[J]. Tissue Cell, 2022, 79: 101956. doi: 10.1016/j.tice.2022.101956
|
[33] |
TANG L J, ZHOU Y J, XIONG X M, et al. Ubiquitin-specific protease 7 promotes ferroptosis via activation of the p53/TfR1 pathway in the rat hearts after ischemia/reperfusion[J]. Free Radic Biol Med, 2021, 162: 339-352. doi: 10.1016/j.freeradbiomed.2020.10.307
|
[34] |
LAKHAL-LITTLETON S, WOLNA M, CHUNG Y J, et al. An essential cell-autonomous role for hepcidin in cardiac iron homeostasis[J]. Elife, 2016, 5: e19804. doi: 10.7554/eLife.19804
|
[35] |
QIU M L, YAN W, LIU M M. YAP facilitates NEDD4L-mediated ubiquitination and degradation of ACSL4 to alleviate ferroptosis in myocardial ischemia-reperfusion injury[J]. Can J Cardiol, 2023, 39(11): 1712-1727. doi: 10.1016/j.cjca.2023.07.030
|
[36] |
CAI W B, LIU L, SHI X L, et al. Alox15/15-HpETE aggravates myocardial ischemia-reperfusion injury by promoting cardiomyocyte ferroptosis[J]. Circulation, 2023, 147(19): 1444-1460. doi: 10.1161/CIRCULATIONAHA.122.060257
|
[37] |
LEE Y S, LEE D H, CHOUDRY H A, et al. Ferroptosis-induced endoplasmic reticulum stress: cross-talk between ferroptosis and apoptosis[J]. Mol Cancer Res, 2018, 16(7): 1073-1076. doi: 10.1158/1541-7786.MCR-18-0055
|
[38] |
LI W Y, LI W, LENG Y, et al. Ferroptosis is involved in diabetes myocardial ischemia/reperfusion injury through endoplasmic reticulum stress[J]. DNA Cell Biol, 2020, 39(2): 210-225. doi: 10.1089/dna.2019.5097
|
[39] |
ZHOU Y Q, ZHOU H X, HUA L, et al. Verification of ferroptosis and pyroptosis and identification of PTGS2 as the hub gene in human coronary artery atherosclerosis[J]. Free Radic Biol Med, 2021, 171: 55-68. doi: 10.1016/j.freeradbiomed.2021.05.009
|
[40] |
ZHAO K, CHEN X S, BIAN Y J, et al. Broadening horizons: The role of ferroptosis in myocardial ischemia-reperfusion injury[J]. Naunyn Schmiedebergs Arch Pharmacol, 2023, 396(10): 2269-2286. doi: 10.1007/s00210-023-02506-5
|
[41] |
XU J F, ZHANG M H, LIU F, et al. Mesenchymal stem cells alleviate post-resuscitation cardiac and cerebral injuries by inhibiting cell pyroptosis and ferroptosis in a swine model of cardiac arrest[J]. Front Pharmacol, 2021, 12: 793829. doi: 10.3389/fphar.2021.793829
|
[42] |
YAN N, XU Z P, QU C H, et al. Dimethyl fumarate improves cognitive deficits in chronic cerebral hypoperfusion rats by alleviating inflammation, oxidative stress, and ferroptosis via NRF2/ARE/NF-κB signal pathway[J]. Int Immunopharmacol, 2021, 98: 107844. doi: 10.1016/j.intimp.2021.107844
|