Citation: | YANG Hui, XIONG Yuan, CHENG Long, QIAN Ming, JI Li. Mechanism of Dengzhan Shengmai capsule in treating coronary heart disease based on network pharmacology and molecular docking technology[J]. Journal of Clinical Medicine in Practice, 2024, 28(9): 1-8, 14. DOI: 10.7619/jcmp.20240541 |
To explore the potential target and mechanism of Dengzhan Shengmai capsule (DZSM) in the treatment of coronary heart disease (CHD) based on network pharmacology and molecular docking technology.
TCMSP and ETCM databases were employed to search the chemical components of DZSM. Swiss ADME database was used to screen active ingredients, and Swiss Target Prediction database was used to obtain potential targets of active ingredients. The CHD target was obtained by searching GeneCards and DisGeNET databases, and the DZSM-active ingredient-CHD target network was constructed. Molecular docking of key active ingredients and core targets was performed to verify binding properties. Gene ontology (GO) and Kyoto Encyclopedia of Genes and Genomes(KEGG) enrichment analysis were performed in the DAVID database. A mouse macrophage cell line (RAW264.7 cells) model induced by oxidized low density lipoprotein (ox-LDL) was used to test the therapeutic effect of scutellarin on CHD in vitro. The production of nitric oxide (NO) in cell supernatant was measured by Griess reaction. Real-time quantitative polymerase chain reaction (qRT-PCR) was used to detect the expression level of serine/threonine kinase (AKT); The expression and phosphorylation of AKT protein were detected by Western Blot.
A total of 56 active compounds of DZSM were obtained to regulate CHD progression by acting on 136 targets. Among them, kaempferol, quercetin, luteolin, apigenin, scutellarein, 6-hydroxykaempferol, scutellarin, nonylphenol, Ophiopogonin D, and Ginsenoside Rb1 could regulate 113 CHD targets. AKT1, SRC, PPARG, EGFR, ESR1, PTGS2, SIRT1, MAPK1, MMP9 and PPARA genes were the core targets of DZSM therapy for CHD. Molecular docking showed that the key active ingredients and core targets had good binding properties. The results of in vitro experiments showed that scutellarin could reduce the production of nitric oxide and increase the level of AKT, protein expression and phosphorylation in macrophages (P < 0.05). KEGG enrichment analysis showed that DZSM treated CHD mainly by regulating cancer pathways, endocrine resistance, AGE-RAGE signaling pathway in diabetic complications, fluid shear stress and atherosclerosis, lipid and atherosclerosis, and relaxin signaling pathway.
DZSM plays a role in the treatment of CHD through multi-component, multi-target and multi-pathway.
[1] |
TOMANIAK M, KATAGIRI Y, MODOLO R, et al. Vulnerable plaques and patients: state-of-the-art[J]. Eur Heart J, 2020, 41(31): 2997-3004. doi: 10.1093/eurheartj/ehaa227
|
[2] |
陈王峰, 金萍. 灯盏生脉胶囊联合常规西药治疗冠心病稳定性心绞痛临床研究[J]. 新中医, 2023, 55(4): 40-45. https://www.cnki.com.cn/Article/CJFDTOTAL-REND202304009.htm
|
[3] |
ZHAO J, LV C, WU Q L, et al. Computational systems pharmacology reveals an antiplatelet and neuroprotective mechanism of Deng-Zhan-Xi-Xin injection in the treatment of ischemic stroke[J]. Pharmacol Res, 2019, 147: 104365. doi: 10.1016/j.phrs.2019.104365
|
[4] |
CHEN M H, CHEN X J, WANG M, et al. Ophiopogon japonicus: a phytochemical, ethnomedicinal and pharmacological review[J]. J Ethnopharmacol, 2016, 181: 193-213. doi: 10.1016/j.jep.2016.01.037
|
[5] |
WANG R Y, WANG M, ZHOU J H, et al. Saponins in Chinese herbal medicine exerts protection in myocardial ischemia-reperfusion injury: possible mechanism and target analysis[J]. Front Pharmacol, 2020, 11: 570867.
|
[6] |
HOU R, JIN X S, GAO Y H, et al. Evaluation of the effects of Schisandra chinensis on the myocardium of rats with hyperthyroid heart disease by using velocity vector imaging combined with the estimation of p53 expression and calmodulin activity[J]. Evid Based Complement Alternat Med, 2020, 2020: 5263834.
|
[7] |
SHEN W T, SONG Z G, ZHONG X, et al. Sangerbox: a comprehensive, interaction-friendly clinical bioinformatics analysis platform[J]. iMeta, 2022, 1(3): e36. doi: 10.1002/imt2.36
|
[8] |
樊华. 灯盏花中野黄芩苷对气滞血瘀型动脉粥样硬化的干预作用及机制研究[D]. 沈阳: 辽宁中医药大学, 2018.
|
[9] |
冯健. 齐墩果酸对大鼠血管平滑肌细胞中血红素氧合酶1表达的影响及其作用机制的研究[D]. 重庆: 第三军医大学, 2011.
|
[10] |
HUANG X Y, WANG Y G, WANG Y, et al. Ophiopogonin D reduces myocardial ischemia-reperfusion injury via upregulating CYP2J3/EETs in rats[J]. Cell Physiol Biochem, 2018, 49(4): 1646-1658. doi: 10.1159/000493500
|
[11] |
YANG F, YANG M Y, LE J Q, et al. Protective effects and therapeutics of ginsenosides for improving endothelial dysfunction: from therapeutic potentials, pharmaceutical developments to clinical trials[J]. Am J Chin Med, 2022, 50(3): 749-772. doi: 10.1142/S0192415X22500318
|
[12] |
GUAN S B, XIN Y F, DING Y G, et al. Ginsenoside Rg1 protects against cardiac remodeling in heart failure via SIRT1/PINK1/parkin-mediated mitophagy[J]. Chem Biodivers, 2023, 20(2): e202200730. doi: 10.1002/cbdv.202200730
|
[13] |
LI Y N, ZHANG W H. Effect of ginsenoside Rb2 on a myocardial cell model of coronary heart disease through Nrf2/HO-1 signaling pathway[J]. Biol Pharm Bull, 2022, 45(1): 71-76. doi: 10.1248/bpb.b21-00525
|
[14] |
王茹. 人参皂苷Re对缺血缺氧损伤心肌线粒体质量控制的优化及机制研究[D]. 北京: 中国中医科学院, 2022.
|
[15] |
张艺红, 刘智. 人参皂苷Rg1对冠心病大鼠的影响研究[J]. 中国临床药理学杂志, 2020, 36(2): 133-136. https://www.cnki.com.cn/Article/CJFDTOTAL-GLYZ202002010.htm
|
[16] |
郭施勉, 楚英杰. 人参皂苷Rg1对冠心病大鼠心肌细胞凋亡的影响及机制研究[J]. 中西医结合心脑血管病杂志, 2021, 19(23): 4054-4059. doi: 10.12102/j.issn.1672-1349.2021.23.008
|
[17] |
LAI Q, YUAN G Y, WANG H, et al. Exploring the protective effects of schizandrol A in acute myocardial ischemia mice by comprehensive metabolomics profiling integrated with molecular mechanism studies[J]. Acta Pharmacol Sin, 2020, 41(8): 1058-1072. doi: 10.1038/s41401-020-0377-7
|
[18] |
杨敏, 姜兴粲, 冯海鹏, 等. 五味子醇甲对去甲肾上腺素诱导心肌肥大损伤的cT-I、cT-T、ET-1调控作用的影响[J]. 中国兽医学报, 2020, 40(8): 1553-1559. https://www.cnki.com.cn/Article/CJFDTOTAL-ZSYX202008020.htm
|
[19] |
ZHAO X Y, XIANG Y J, CAI C H, et al. Schisandrin B protects against myocardial ischemia/reperfusion injury via the PI3K/Akt pathway in rats[J]. Mol Med Rep, 2018, 17(1): 556-561.
|
[20] |
李卓伦, 杨彦涛, 孙志, 等. 基于UHPLC-Q-Orbitrap和网络药理学的灯盏生脉胶囊治疗心绞痛的机制研究[J]. 中草药, 2021, 52(12): 3501-3513. doi: 10.7501/j.issn.0253-2670.2021.12.005
|
[21] |
孙银芳. HPLC法测定灯盏生脉胶囊中灯盏花乙素含量的研究[J]. 新中医, 2015, 47(11): 206-208. https://www.cnki.com.cn/Article/CJFDTOTAL-REND201511098.htm
|
[22] |
李元元. 灯盏生脉药效成分体内外解析分析研究[D]. 北京: 北京协和医学院, 2022.
|
[23] |
CAO H, JIA Q L, YAN L, et al. Quercetin suppresses the progression of atherosclerosis by regulating MST1-mediated autophagy in ox-LDL-induced RAW264.7 macrophage foam cells[J]. Int J Mol Sci, 2019, 20(23): 6093. doi: 10.3390/ijms20236093
|
[24] |
DING J, WU J, WEI H R, et al. Exploring the mechanism of hawthorn leaves against coronary heart disease using network pharmacology and molecular docking[J]. Front Cardiovasc Med, 2022, 9: 804801. doi: 10.3389/fcvm.2022.804801
|
[25] |
LI Z, CHENG Q, YU L, et al. Dan-Lou tablets reduces inflammatory response via suppression of the MyD88/p38 MAPK/NF-κB signaling pathway in RAW 264. 7 macrophages induced by ox-LDL[J]. J Ethnopharmacol, 2022, 298: 115600. doi: 10.1016/j.jep.2022.115600
|
[26] |
ZHANG Y F, DING J, WANG Y R, et al. Guanxinkang decoction attenuates the inflammation in atherosclerosis by regulating efferocytosis and MAPKs signaling pathway in LDLR-/- mice and RAW264.7 cells[J]. Front Pharmacol, 2021, 12: 731769. doi: 10.3389/fphar.2021.731769
|
[27] |
ZHU J Q, YE Q F, XU S X, et al. Shengmai injection alleviates H2O2-induced oxidative stress through activation of AKT and inhibition of ERK pathways in neonatal rat cardiomyocytes[J]. J Ethnopharmacol, 2019, 239: 111677. doi: 10.1016/j.jep.2019.01.001
|
[28] |
ZHENG Y R, TIAN C Y, FAN C L, et al. Sheng-Mai Yin exerts anti-inflammatory effects on RAW 264. 7 cells and zebrafish[J]. J Ethnopharmacol, 2021, 267: 113497. doi: 10.1016/j.jep.2020.113497
|
[29] |
FLORIDO R, DAYA N R, NDUMELE C E, et al. Cardiovascular disease risk among cancer survivors: the atherosclerosis risk in communities (ARIC) study[J]. J Am Coll Cardiol, 2022, 80(1): 22-32. doi: 10.1016/j.jacc.2022.04.042
|
[30] |
DUGANI S B, MOORTHY M V, LI C Y, et al. Association of lipid, inflammatory, and metabolic biomarkers with age at onset for incident coronary heart disease in women[J]. JAMA Cardiol, 2021, 6(4): 437-447. doi: 10.1001/jamacardio.2020.7073
|
[31] |
KOSMOPOULOS M, DREKOLIAS D, ZAVRAS P D, et al. Impact of advanced glycation end products (AGEs) signaling in coronary artery disease[J]. Biochim Biophys Acta Mol Basis Dis, 2019, 1865(3): 611-619. doi: 10.1016/j.bbadis.2019.01.006
|
[32] |
JACKSON M L, BOND A R, GEORGE S J. Mechanobiology of the endothelium in vascular health and disease: in vitro shear stress models[J]. Cardiovasc Drugs Ther, 2023, 37(5): 997-1010.
|
[33] |
MALEKMOHAMMAD K, BEZSONOV E E, RAFIEIAN-KOPAEI M. Role of lipid accumulation and inflammation in atherosclerosis: focus on molecular and cellular mechanisms[J]. Front Cardiovasc Med, 2021, 8: 707529.
|
[34] |
GAO X M, SU Y D, MOORE S, et al. Relaxin mitigates microvascular damage and inflammation following cardiac ischemia-reperfusion[J]. Basic Res Cardiol, 2019, 114(4): 30.
|
[35] |
LI Z, AGRAWAL V, RAMRATNAM M, et al. Cardiac sodium-dependent glucose cotransporter 1 is a novel mediator of ischaemia/reperfusion injury[J]. Cardiovasc Res, 2019, 115(11): 1646-1658.
|
[36] |
XU H, LI H Q, ZHU P X, et al. Tanshinone IIA ameliorates progression of CAD through regulating cardiac H9c2 cells proliferation and apoptosis by miR-133a-3p/EGFR axis[J]. Drug Des Devel Ther, 2020, 14: 2853-2863.
|
[37] |
SEMENZA G L. Hypoxia-inducible factors: roles in cardiovascular disease progression, prevention, and treatment[J]. Cardiovasc Res, 2023, 119(2): 371-380.
|