Citation: | XU Manyu, LUO Ying, LI Daohong, XU Zhiying. Influencing factors and predictive model construction of malnutrition in hospitalized elderly patients with comorbidities of chronic diseases[J]. Journal of Clinical Medicine in Practice, 2024, 28(17): 73-78. DOI: 10.7619/jcmp.20241199 |
To investigate the influencing factors of malnutrition in hospitalized elderly patients with comorbidities of chronic diseases, and to construct a predictive model.
A convenience sampling method was used to select 426 elderly patients with comorbidities of chronic diseases admitted to the Department of Geriatrics of Suzhou Ninth People's Hospital Affiliated to Soochow University from January 2023 to February 2024. Based on a Mini-nutritional Assessment-Short Form (MNA-SF) score < 8 and either an albumin level < 34.0 g/L or a prealbumin level < 200 mg/L as reference of malnutrition, patients were classified into malnutrition group and non-malnutrition group. General characteristics, oral status[assessed using the Oral Health Assessment Tool (OHAT)], dietary inflammatory index (DII, evaluated through a food frequency questionnaire), and activities of daily living[assessed using the Barthel Index (BI)]were compared between the two groups. Multivariable Logistic regression analysis was employed to explore the influencing factors of malnutrition in elderly patients with comorbidities of chronic diseases and to construct a model formula. A gradient boosting machine (GBM) algorithm was implemented using R software to build a GBM predictive model. Receiver Operating Characteristic (ROC) curves were utilized to analyze the predictive performance of both models, and the Delong test was applied to compare the difference of the area under the curve (AUC).
Ninety-two patients were diagnosed with malnutrition (malnutrition group), while 334 patients had no malnutrition (non-malnutrition group). Statistically significant differences were observed between the malnutrition and non-malnutrition groups in terms of age, the number of chronic comorbidities, the number of medication taken, OHAT scores, DII, and BI scores (P < 0.05). Advanced age, a higher number of chronic comorbidities, a greater number of medication taken, higher OHAT scores, higher DII, and lower BI scores were all influencing factors of malnutrition in elderly patients with comorbidities of chronic diseases (P < 0.05). The ROC curve analysis revealed an AUC of GBM model was 0.901 and 0.874 for the Logistic regression model. The Delong test indicated that the predictive performance of the GBM model was superior to that of the Logistic regression model (P < 0.05).
Malnutrition in hospitalized elderly patients with chronic multimorbidity is associated with age, the number of chronic comorbidities, the number of medications taken, OHAT scores, DII, and BI scores. The constructed GBM model can effectively assess the risk of malnutrition in these patients.
[1] |
徐莉, 葛晶, 于鹏, 等. 中国老年人慢性病及共病模式变化研究: 基于中国健康与养老追踪调查数据[J]. 中国全科医学, 2024, 27(11): 1296-1302. doi: 10.12114/j.issn.1007-9572.2023.0634
|
[2] |
杨直, 高静, 柏丁兮, 等. 老年慢性病共病患者治疗负担体验的质性研究[J]. 中国全科医学, 2022, 25(19): 2336-2341. doi: 10.12114/j.issn.1007-9572.2022.0169
|
[3] |
张莉娜, 黄晓, 魏绍峰, 等. 人体测量指标在老年住院患者营养不良风险评估中的筛查效果[J]. 中国老年学杂志, 2024, 44(4): 984-987. doi: 10.3969/j.issn.1005-9202.2024.04.055
|
[4] |
王劼琼, 朱树贞, 詹艳, 等. 口腔健康评估量表的汉化及信效度检验[J]. 中华现代护理杂志, 2019, 25(28): 3607-3610. doi: 10.3760/cma.j.issn.1674-2907.2019.28.010
|
[5] |
中国疾病预防控制中心营养与健康所. 《中国食物成分表》标准版(第6版) [J]. 营养学报, 2019, 41(5): 426-428.
|
[6] |
HÉBERT J R, SHIVAPPA N, WIRTH M D, et al. Perspective: the dietary inflammatory index (DII)-lessons learned, improvements made, and future directions[J]. Adv Nutr, 2019, 10(2): 185-195. doi: 10.1093/advances/nmy071
|
[7] |
侯东哲, 张颖, 巫嘉陵, 等. 中文版Barthel指数的信度与效度研究[J]. 临床荟萃, 2012, 27(3): 219-221.
|
[8] |
KAISER M J, BAUER J M, RAMSCH C, et al. Validation of the Mini Nutritional Assessment short-form (MNA-SF): a practical tool for identification of nutritional status[J]. J Nutr Health Aging, 2009, 13(9): 782-788. doi: 10.1007/s12603-009-0214-7
|
[9] |
CRICHTON M, CRAVEN D, MACKAY H, et al. A systematic review, meta-analysis and meta-regression of the prevalence of protein-energy malnutrition: associations with geographical region and sex[J]. Age Ageing, 2019, 48(1): 38-48.
|
[10] |
崔红元, 朱明炜, 陈伟, 等. 中国老年住院患者营养状态的多中心调查研究[J]. 中华老年医学杂志, 2021, 40(3): 364-369.
|
[11] |
冉蕾, 向英, 王璋. 老年肠内营养支持期间喂养不耐受发生率及影响因素分析[J]. 实用预防医学, 2024, 31(4): 440-444.
|
[12] |
夏银平, 余飞, 杨虹, 等. 住院老年慢性病共病患者营养情况的影响因素分析[J]. 中国医药导报, 2023, 20(4): 108-111.
|
[13] |
刘璟, 许文馨, 朱俊东, 等. 养老机构老年人营养不良现状及影响因素分析[J]. 护理学杂志, 2022, 37(3): 97-100.
|
[14] |
汤红梅, 许慧琳, 郭琪, 等. 上海市闵行社区老年人营养不良风险评估及其影响因素[J]. 环境与职业医学, 2023, 40(9): 1068-1073.
|
[15] |
郁阿翠, 陈喜, 杨萌娜, 等. 老年人营养不良状况及影响因素分析[J]. 实用老年医学, 2022, 36(8): 822-826, 832.
|
[16] |
DANTAS P P A, COLUSSI P R G, DEZINGRINI K D S, et al. Pairs of natural teeth rather than use of dental prosthesis are associated with nutritional status in older adults: a cross-sectional study[J]. J Dent, 2021, 108: 103656.
|
[17] |
ZHU Z, XU J Y, LIN Y, et al. Correlation between nutritional status and oral health quality of life, self-efficacy of older inpatients and the influencing factors[J]. BMC Geriatr, 2022, 22(1): 280.
|
[18] |
KIM S, KWON Y S, HONG K H. What is the relationship between the chewing ability and nutritional status of the elderly in Korea[J]. Nutrients, 2023, 15(9): 2042.
|
[19] |
叶晨, 黄晓婕, 苏米亚·艾合买提江, 等. 中国居民膳食炎症指数情况及变化趋势[J]. 中国食物与营养, 2023, 29(2): 85-89.
|
[20] |
MA T C, ZHOU J, WANG C X, et al. Association between dietary inflammatory index and S-klotho plasma levels in middle-aged and elderly people[J]. Front Nutr, 2022, 9: 853332.
|
[21] |
闫慧慧, 刘鑫, 肖千一, 等. 膳食炎症指数在社区老年人的应用初探[J]. 老年医学与保健, 2021, 27(2): 395-398.
|
[22] |
李伟红, 吴新春, 李毅, 等. 老年住院患者膳食摄入与营养状况调查[J]. 中国临床保健杂志, 2021, 24(2): 183-187.
|
[23] |
刘金枚, 张坤, 彭杨, 等. 医养结合机构老年人营养不良预测模型的构建及验证[J]. 护理研究, 2023, 37(18): 3254-3260.
|
[24] |
中华人民共和国国务院办公厅. 国民营养计划(2017—2030)[EB/OL]. (2017-07-13)[2019-03-02]. http://www.gov.cn/zhengce/content/2017-07/13/content_5210134.hrm.
|