LI Mengyao, LU Guangyu, SHI Nan, ZENG Qingping, GAO Xianru, LI Yuping. Systematic evaluation of risk prediction model for methicillin-resistant Staphylococcus aureus infection[J]. Journal of Clinical Medicine in Practice, 2024, 28(12): 118-124. DOI: 10.7619/jcmp.20241411
Citation: LI Mengyao, LU Guangyu, SHI Nan, ZENG Qingping, GAO Xianru, LI Yuping. Systematic evaluation of risk prediction model for methicillin-resistant Staphylococcus aureus infection[J]. Journal of Clinical Medicine in Practice, 2024, 28(12): 118-124. DOI: 10.7619/jcmp.20241411

Systematic evaluation of risk prediction model for methicillin-resistant Staphylococcus aureus infection

More Information
  • Received Date: April 07, 2024
  • Revised Date: June 04, 2024
  • Available Online: June 28, 2024
  • Objective 

    To retrieve relevant literature on risk prediction model for methicillin-resistant Staphylococcus aureus (MRSA) infection among hospitalized patients from databases and evaluate the predictive model.

    Methods 

    The literature on risk prediction models for MRSA infection among hospitalized patients was retrieved from PubMed, Embase, Scopus, Cochrane library, China National Knowledge Infrastructure (CNKI), WanFang data, and VIP database, with a time range from the inception of the database to January 1, 2024. Two researchers independently screened the literature, extracted data. The Prediction Model Risk of Bias Assessment Tool (PROBAST) was applied to evaluate the risk of bias and applicability of the prediction model in the literature, and descriptive analysis was conducted.

    Results 

    A total of 12 articles (15 prediction models) were included in this study, with significant differences in the total sample size, the number of MRSA infection events, sample size of modeling, and sample size of validation among the studies. Common predictors in the prediction models were admission to the intensive care unit, antibiotic use, history of residence in nursing facilities, age, chronic kidney disease, and previous hospitalization history. Nine articles conducted internal validation, and three articles conducted both internal and external validation. Nine articles reported the area under the receiver operating characteristic curve, and only three articles reported the calibration of the model based on the Hosmer-Lemeshow test. PROBAST analysis showed that 10 articles were assessed as high risk bias, mainly stemming from statistical analysis.

    Conclusion 

    Most of the MRSA infection risk prediction models in the current literature have good predictive efficacy for MRSA infection, but they all have higher overall risk of bias, and only a few models have undergone external validation. Researchers should follow PROBAST standards to construct and externally validate models in the future so as to develop models suitable for clinical practice.

  • [1]
    MAGILL S S, EDWARDS J R, BAMBERG W, et al. Multistate point-prevalence survey of health care-associated infections[J]. N Engl J Med, 2014, 370(13): 1198-1208. doi: 10.1056/NEJMoa1306801
    [2]
    陈晖, 张莉, 陆晨, 等. 脑出血术后多重耐药感染风险的诺模图预测模型的构建与验证[J]. 实用临床医药杂志, 2024, 28(8): 45-49, 54. doi: 10.7619/jcmp.20234252
    [3]
    KLEVENS R M, MORRISON M A, NADLE J, et al. Invasive methicillin-resistant Staphylococcus aureus infections in the United States[J]. JAMA, 2007, 298(15): 1763-1771. doi: 10.1001/jama.298.15.1763
    [4]
    GRUNDMANN H, AIRES-DE-SOUSA M, BOYCE J, et al. Emergence and resurgence of meticillin-resistant Staphylococcus aureus as a public-health threat[J]. Lancet, 2006, 368(9538): 874-885. doi: 10.1016/S0140-6736(06)68853-3
    [5]
    ZHEN X M, LUNDBORG C S, ZHANG M L, et al. Clinical and economic impact of methicillin-resistant Staphylococcus aureus: a multicentre study in China[J]. Sci Rep, 2020, 10(1): 3900. doi: 10.1038/s41598-020-60825-6
    [6]
    DE KRAKER M E, WOLKEWITZ M, DAVEY P G, et al. Clinical impact of antimicrobial resistance in European hospitals: excess mortality and length of hospital stay related to methicillin-resistant Staphylococcus aureus bloodstream infections[J]. Antimicrob Agents Chemother, 2011, 55(4): 1598-1605. doi: 10.1128/AAC.01157-10
    [7]
    张杰, 谢星星, 范小冬, 等. 耐甲氧西林金黄色葡萄球菌血流感染危险因素的系统评价[J]. 药物评价研究, 2023, 46(10): 2243-2250. https://www.cnki.com.cn/Article/CJFDTOTAL-YWPJ202310023.htm
    [8]
    MOONS K G M, WOLFF R F, RILEY R D, et al. PROBAST: a tool to assess risk of bias and applicability of prediction model studies: explanation and elaboration[J]. Ann Intern Med, 2019, 170(1): W1-W33. doi: 10.7326/M18-1377
    [9]
    MOONS K G, DE GROOT J A, BOUWMEESTER W, et al. Critical appraisal and data extraction for systematic reviews of prediction modelling studies: the CHARMS checklist[J]. PLoS Med, 2014, 11(10): e1001744. doi: 10.1371/journal.pmed.1001744
    [10]
    陈香萍, 张奕, 庄一渝, 等. PROBAST: 诊断或预后多因素预测模型研究偏倚风险的评估工具[J]. 中国循证医学杂志, 2020, 20(6): 737-744. https://www.cnki.com.cn/Article/CJFDTOTAL-ZZXZ202006017.htm
    [11]
    RHODES N J, ROHANI R, YARNOLD P R, et al. Machine learning to stratify methicillin-resistant Staphylococcus aureus risk among hospitalized patients with community-acquired pneumonia[J]. Antimicrob Agents Chemother, 2023, 67(1): e0102322. doi: 10.1128/aac.01023-22
    [12]
    宋志伟, 蔡艳群, 郏伊范, 等. 医院耐甲氧西林金黄色葡萄球菌感染的风险模型建立及耐药基因检测[J]. 浙江医学, 2022, 44(6): 598-602. https://www.cnki.com.cn/Article/CJFDTOTAL-ZJYE202206008.htm
    [13]
    ZASOWSKI E J, TRINH T D, CLAEYS K C, et al. International validation of a methicillin-resistant Staphylococcus aureus risk assessment tool for skin and soft tissue infections[J]. Infect Dis Ther, 2022, 11(6): 2253-2263. doi: 10.1007/s40121-022-00712-x
    [14]
    HIRANO Y, SHINMOTO K, OKADA Y, et al. Machine learning approach to predict positive screening of methicillin-resistant Staphylococcus aureus during mechanical ventilation using synthetic dataset from MIMIC-Ⅳ database[J]. Front Med, 2021, 8: 694520. doi: 10.3389/fmed.2021.694520
    [15]
    RASCHPICHLER G, RAUPACH-ROSIN H, AKMATOV M K, et al. Development and external validation of a clinical prediction model for MRSA carriage at hospital admission in Southeast Lower Saxony, Germany[J]. Sci Rep, 2020, 10(1): 17998. doi: 10.1038/s41598-020-75094-6
    [16]
    YOSHIOKA N, DEGUCHI M, HAGIYA H, et al. Available, Bed-sided, Comprehensive (ABC) score to a diagnosis of Methicillin-resistant Staphylococcus aureus infection: a derivation and validation study[J]. BMC Infect Dis, 2018, 18(1): 19. doi: 10.1186/s12879-017-2919-2
    [17]
    JWA H, BEOM J W, LEE J H. Predictive factors of methicillin-resistant Staphylococcus aureus infection in elderly patients with community-onset pneumonia[J]. Tuberc Respir Dis, 2017, 80(2): 201-209. doi: 10.4046/trd.2017.80.2.201
    [18]
    CALLEJO-TORRE F, EIROS BOUZA J M, OLAECHEA ASTIGARRAGA P, et al. Risk factors for methicillin-resistant Staphylococcus aureus colonisation or infection in intensive care units and their reliability for predicting MRSA on ICU admission[J]. Infez Med, 2016, 24(3): 201-209.
    [19]
    LEE A S, PAN A, HARBARTH S, et al. Variable performance of models for predicting methicillin-resistant Staphylococcus aureus carriage in European surgical wards[J]. BMC Infect Dis, 2015, 15: 105. doi: 10.1186/s12879-015-0834-y
    [20]
    SHORR A F, MYERS D E, HUANG D B, et al. A risk score for identifying methicillin-resistant Staphylococcus aureus in patients presenting to the hospital with pneumonia[J]. BMC Infect Dis, 2013, 13: 268. doi: 10.1186/1471-2334-13-268
    [21]
    ELIAS J, HEUSCHMANN P U, SCHMITT C, et al. Prevalence dependent calibration of a predictive model for nasal carriage of methicillin-resistant Staphylococcus aureus[J]. BMC Infect Dis, 2013, 13: 111. doi: 10.1186/1471-2334-13-111
    [22]
    ZILBERBERG M D, CHAUDHARI P, NATHANSON B H, et al. Development and validation of a bedside risk score for MRSA among patients hospitalized with complicated skin and skin structure infections[J]. BMC Infect Dis, 2012, 12: 154. doi: 10.1186/1471-2334-12-154
    [23]
    KAMAL H, LOPEZ V, SHETH S A. Machine learning in acute ischemic stroke neuroimaging[J]. Front Neurol, 2018, 9: 945. doi: 10.3389/fneur.2018.00945
    [24]
    HUANG Y X, LI W T, MACHERET F, et al. A tutorial on calibration measurements and calibration models for clinical prediction models[J]. J Am Med Inform Assoc, 2020, 27(4): 621-633. doi: 10.1093/jamia/ocz228
    [25]
    STEYERBERG E W. Validation in prediction research: the waste by data splitting[J]. J Clin Epidemiol, 2018, 103: 131-133. doi: 10.1016/j.jclinepi.2018.07.010
    [26]
    许汝福. Logistic回归变量筛选及回归方法选择实例分析[J]. 中国循证医学杂志, 2016, 16(11): 1360-1364. doi: 10.7507/1672-2531.20160205
    [27]
    黄夏璇, 黄韬, 杨瑞, 等. UK Biobank数据的应用介绍[J]. 中国循证医学杂志, 2022, 22(9): 1099-1107. https://www.cnki.com.cn/Article/CJFDTOTAL-ZZXZ202209016.htm

Catalog

    Article views (137) PDF downloads (12) Cited by()

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return