FANG Yang, LI Ying, CHEN Zhihong, ZHENG Shengnan, GONG Jian, WU Qihua, YANG Xiaoyu, WEN Xiuping, LIN Donghong. Construction and validation of a predictive model for septic shock based on propensity score matching[J]. Journal of Clinical Medicine in Practice, 2024, 28(21): 53-59. DOI: 10.7619/jcmp.20242165
Citation: FANG Yang, LI Ying, CHEN Zhihong, ZHENG Shengnan, GONG Jian, WU Qihua, YANG Xiaoyu, WEN Xiuping, LIN Donghong. Construction and validation of a predictive model for septic shock based on propensity score matching[J]. Journal of Clinical Medicine in Practice, 2024, 28(21): 53-59. DOI: 10.7619/jcmp.20242165

Construction and validation of a predictive model for septic shock based on propensity score matching

More Information
  • Received Date: May 22, 2024
  • Revised Date: September 02, 2024
  • Objective 

    To construct a predictive model for septic shock based on the propensity score matching (PSM) method and validate its effectiveness.

    Methods 

    A total of 114 patients with sepsis were enrolled as study objects, and were divided into septic shock group (40 patients) and sepsis group (74 patients) according to whether they developed septic shock. PSM was performed with a ratio of septic shock to sepsis of 1∶2, resulting in the inclusion of 30 patients in the septic shock group and 60 patients in the sepsis group after matching. The levels of C-reactive protein (CRP), procalcitonin (PCT), interleukin-6 (IL-6), serum amyloid A (SAA), soluble endothelial protein C receptor (sEPCR), endothelial cell-specific molecule 1 (ESM-1), clusterin (CLU), and the Acute Physiology and Chronic Health Evaluation Ⅱ (APACHE Ⅱ) score and Sequential Organ Failure Assessment (SOFA) score at admission were compared between the two groups. Cox proportional hazards regression analysis was used to identify the factors influencing septic shock, and a predictive model for septic shock was constructed and internally validated using the receiver operating characteristic (ROC) curve. Kaplan-Meier survival curves were plotted to analyze the differences in survival prognosis among patients with different expression levels of the indicators.

    Results 

    After matching, there were no statistically significant differences in general information between the two groups (P>0.05). At admission, the septic shock group had higher levels of serum PCT, CRP, SAA, IL-6, sEPCR, ESM-1, and higher APACHE Ⅱ and SOFA scores, as well as a lower level of serum CLU compared with the sepsis group (P < 0.05). Cox regression analysis showed that PCT, CRP, SAA, IL-6, sEPCR, ESM-1, APACHE Ⅱ score, and SOFA score were independent risk factors for septic shock (P < 0.05), while CLU was an independent protective factor (P < 0.05). The predictive model for septic shock, constructed based on these factors, showed an internal validation accuracy of 94.44%, an area under the curve of 0.950, a sensitivity of 93.33%, and a specificity of 96.67%. Dead patients had higher levels of PCT, CRP, SAA, IL-6, sEPCR, ESM-1, and higher APACHE Ⅱ and SOFA scores, as well as a lower level of CLU at admission compared with survivors (P < 0.05). Compared with patients with low expression levels or low scores, patients with high expression levels of PCT, CRP, SAA, IL-6, sEPCR, ESM-1, and high APACHE Ⅱ and SOFA scores had higher fatality rates, while patients with high CLU expression levels had a lower fatality rate (P < 0.05).

    Conclusion 

    The serum biomarkers including PCT, CRP, SAA, IL-6, sEPCR, ESM-1, CLU, and the APACHE Ⅱ and SOFA scores in sepsis patients are closely related to the occurrence of septic shock and survival prognosis. The predictive model constructed by combining these indicators can accurately predict the occurrence of septic shock.

  • [1]
    SINGER M, DEUTSCHMAN C S, SEYMOUR C W, et al. The third international consensus definitions for sepsis and septic shock (sepsis-3)[J]. JAMA, 2016, 315(8): 801-810. doi: 10.1001/jama.2016.0287
    [2]
    FONT M D, THYAGARAJAN B, KHANNA A K. Sepsis and Septic Shock-Basics of diagnosis, pathophysiology and clinical decision making[J]. Med Clin North Am, 2020, 104(4): 573-585. doi: 10.1016/j.mcna.2020.02.011
    [3]
    中国中西医结合学会急救医学专业委员会, 《中国中西医结合急救杂志》编辑委员会. 脓毒性休克中西医结合诊治专家共识[J]. 中华危重病急救医学, 2019, 31(11): 1317-1323. doi: 10.3760/cma.j.issn.2095-4352.2019.11.002
    [4]
    SONG Y L, YAO C, YAO Y M, et al. XueBiJing injection versus placebo for critically ill patients with severe community-acquired pneumonia: a randomized controlled trial[J]. Crit Care Med, 2019, 47(9): e735-e743. doi: 10.1097/CCM.0000000000003842
    [5]
    庄雪明, 王诗波, 虞大为, 等. 脓毒性休克患者抗菌肽LL-37与降钙素原联合检测价值[J]. 实用临床医药杂志, 2021, 25(5): 96-100. doi: 10.7619/jcmp.20201396
    [6]
    OSGOOD A M, HOLLENBECK D, YANKIN I. Evaluation of quick sequential organ failure scores in dogs with severe sepsis and septic shock[J]. J Small Anim Pract, 2022, 63(10): 739-746. doi: 10.1111/jsap.13522
    [7]
    GHOSH R, DEY R, SAWOO R, et al. Endogenous neutralization of TGF-β and IL-6 ameliorates septic arthritis by altering RANKL/OPG interaction in lymphocytes[J]. Mol Immunol, 2022, 152: 183-206. doi: 10.1016/j.molimm.2022.10.015
    [8]
    中国医师协会急诊医师分会, 中国研究型医院学会休克与脓毒症专业委员会. 中国脓毒症/脓毒性休克急诊治疗指南(2018)[J]. 感染、炎症、修复, 2019, 20(1): 3-22. doi: 10.3969/j.issn.1672-8521.2019.01.001
    [9]
    朱沙沙, 兰天, 李战炜. 脓毒性休克院内死亡的风险预测模型构建与验证[J]. 数理医药学杂志, 2023, 36(8): 592-600.
    [10]
    周思颖, 顾国嵘, 慕婉晴, 等. 细胞因子、经皮氧分压/吸入氧浓度联合危重评分对脓毒症患者进展为脓毒性休克及预后的预测价值[J]. 中国临床医学, 2023, 30(3): 426-431.
    [11]
    石颖, 於江泉, 张文娟. 内质网应激在脓毒症中的研究进展[J]. 实用临床医药杂志, 2023, 27(14): 121-125. doi: 10.7619/jcmp.20230103
    [12]
    唐梅, 马艳, 张西京, 等. 脓毒症脑病的诊疗进展[J]. 空军军医大学学报, 2023, 44(4): 375-379, 384.
    [13]
    王泽田, 齐越, 唐建国. 基于蛋白组学筛选的外周血蛋白在脓毒症诊断中的应用[J]. 实用临床医药杂志, 2023, 27(20): 80-85. doi: 10.7619/jcmp.20231071
    [14]
    廖海燕, 柴彦, 郭喆, 等. 脓毒症生物标志物的研究进展[J]. 医学综述, 2023, 29(2): 250-255.
    [15]
    杨美程, 李润发, 陈辉, 等. 人工智能辅助诊疗在脓毒症管理中的应用进展[J]. 药学进展, 2023, 47(10): 758-768.
    [16]
    EVANS L, RHODES A, ALHAZZANI W, et al. Surviving sepsis campaign: international guidelines for management of sepsis and septic shock 2021[J]. Crit Care Med, 2021, 49(11): e1063-e1143. doi: 10.1097/CCM.0000000000005337
    [17]
    李赵进, 冯爽, 赵根明, 等. 常见倾向性评分匹配方法在真实世界研究中的应用[J]. 中国卫生统计, 2023, 40(2): 307-311.
    [18]
    MOLANO-FRANCO D, AREVALO-RODRIGUEZ I, MURIEL A, et al. Basal procalcitonin, C-reactive protein, interleukin-6, and presepsin for prediction of mortality in critically ill septic patients: a systematic review and meta-analysis[J]. Diagn Progn Res, 2023, 7(1): 15. doi: 10.1186/s41512-023-00152-2
    [19]
    李烽辉, 彭志允, 唐钟祥, 等. C反应蛋白及降钙素原对脓毒血症休克短期预后的预测价值[J]. 中国医药导报, 2021, 18(25): 93-97.
    [20]
    雷玲玲, 彭军, 曹晓琴. 降钙素原、D-二聚体、全程C反应蛋白联合检测在脓毒症患儿中的诊断价值[J]. 临床医学研究与实践, 2023, 8(1): 88-91.
    [21]
    喻淑慧, 李园园, 胡克. PCT、CRP、SAA及FIB水平检测对脓毒血症的诊断价值[J]. 医学研究杂志, 2016, 45(3): 123-126.
    [22]
    陈君, 王妮, 陈栩栩, 等. ICU脓毒症患者血清Presepsin、内毒素、IL-6、PCT水平与预后的相关性[J]. 中华医院感染学杂志, 2022, 32(3): 356-359.
    [23]
    孙彦博, 滕思勇, 罗振立, 等. 血清Clusterin对急性STEMI患者PCI术后主要不良心血管事件的预测价值[J]. 中国循证心血管医学杂志, 2022, 14(8): 1008-1011.
    [24]
    SEO H Y, LEE S H, LEE J H, et al. Clusterin attenuates hepatic fibrosis by inhibiting hepatic stellate cell activation and downregulating the Smad3 signaling pathway[J]. Cells, 2019, 8(11): 1442. doi: 10.3390/cells8111442
    [25]
    PARK J S, LEE W K, KIM H S, et al. Clusterin overexpression protects against western diet-induced obesity and NAFLD[J]. Sci Rep, 2020, 10(1): 17484. doi: 10.1038/s41598-020-73927-y
    [26]
    KRAUTZ C, MAIER S L, BRUNNER M, et al. Reduced circulating B cells and plasma IgM levels are associated with decreased survival in sepsis-A meta-analysis[J]. J Crit Care, 2018, 45: 71-75. doi: 10.1016/j.jcrc.2018.01.013
    [27]
    郭俊, 许强宏. 脓毒症患者血栓调节蛋白和纤溶酶原激活物抑制剂-1及内皮细胞损伤程度的研究初探[J]. 中华内科杂志, 2021, 60(2): 143-146.
    [28]
    钱骏, 黄中伟, 徐建如, 等. sEPCR在脓毒症患者中的表达及临床意义[J]. 中国医药导报, 2021, 18(10): 88-91.
    [29]
    杨晓梅, 杭敏, 许磊, 等. 脓毒症患者血清ESM-1、D-D、miR-155-5p、PCT的变化与患者预后的关系[J]. 医学临床研究, 2019, 36(4): 759-761.
  • Related Articles

    [1]WANG Yaning, CUI Liye, CHEN Yilin, JIA Hongchao. Correlations of serum interleukin-6, Janus kinase/signal transducers and activators of transcription protein with immune function in children with viral bronchiolitis[J]. Journal of Clinical Medicine in Practice, 2022, 26(7): 78-81. DOI: 10.7619/jcmp.20214423
    [2]SHI Fang. Values of serum amyloid A and ratio of C reactive protein to prealbumin in diagnosis of acute exacerbation of chronic obstructive pulmonary disease complicated with lower respiratory tract infection[J]. Journal of Clinical Medicine in Practice, 2020, 24(19): 22-25. DOI: 10.7619/jcmp.202019007
    [3]HUANG Lei. Changes of serum procalcitonin, C reactive protein and interleukin-6 levels in patients with severe pneumonia[J]. Journal of Clinical Medicine in Practice, 2018, (19): 133-135. DOI: 10.7619/jcmp.201819040
    [4]XIA Hui, HU Tingting, LIU Wen, ZHOU Chang, LU Timing. Effects of oxiracetam combined with rosuvastat on levels of serum hs-CRP, IL-1β and IL-6 in patients with cerebral infarction[J]. Journal of Clinical Medicine in Practice, 2017, (5): 32-35. DOI: 10.7619/jcmp.201705009
    [5]MO Jiani, XU Shuangming. Clinical significance of serum amyloid A in acute exacerbation of chronic obstructive pulmonary disease[J]. Journal of Clinical Medicine in Practice, 2016, (1): 48-51. DOI: 10.7619/jcmp.201601015
    [6]ZHANG Xue, JIA Xingya, ZHANG Zhongti, LIU Xiaozhou, ZHU Lun, ZHANG Dongmei. Detections of periodontal indexes, serum C-reactive protein and interleukin-6 levels in patients with hyperlipidemia and periodontitis[J]. Journal of Clinical Medicine in Practice, 2015, (11): 78-81. DOI: 10.7619/jcmp.201511023
    [7]CHEN Kun, WANG Xiaogang, LI Dihang, KONG Yong. Clinical significance of level changes of serum IL-6, IL-8 and VEGF-A in patients with breast cancer before and after operations[J]. Journal of Clinical Medicine in Practice, 2014, (23): 54-56. DOI: 10.7619/jcmp.201423018
    [8]ZHANG Hu, LI Zhi. Effect of Astragalus injection on serum tumor necrosis factor-α, interleukin-6 and angiotensin Ⅱ in patients with chronic heart failure[J]. Journal of Clinical Medicine in Practice, 2014, (23): 17-19. DOI: 10.7619/jcmp.201423006
    [9]WU Yiping. Clinical significance of serum tumor necrosis factor-α and interleukin-6 in measuring acute intussusception in the infants[J]. Journal of Clinical Medicine in Practice, 2013, (24): 75-77. DOI: 10.7619/jcmp.201324022
    [10]ZHANG Yuhua, CAI Xiangzeng, GUO Minghe. Effects of Chuanxiongqin on serum high-sensitivity C-reactive protein, interleukin-6 and matrix metalloproteinases-9 in treating acute cerebral infarction[J]. Journal of Clinical Medicine in Practice, 2013, (17): 78-80. DOI: 10.7619/jcmp.201317026
  • Cited by

    Periodical cited type(7)

    1. 刘业琼,王蕾,曹励欧,徐炜新. 中段尿样本病原菌快速检测方法的建立与评估. 分子诊断与治疗杂志. 2025(03): 441-444 .
    2. 袁佳春,许明佳,许艳丹,李伟,叶玉龙. 上海金山区宾馆淋浴水和公共浴室水中嗜肺军团菌MALDI-TOF MS快速检测及聚类分析. 中国卫生检验杂志. 2023(04): 426-428 .
    3. 张小云,刘本,连建春,姜玉章,唐朝贵,王霞. 质谱鉴定联合直接快速药敏试验在细菌血流感染中的应用. 医学信息. 2023(03): 98-103 .
    4. 蒲玉熙,次仁央金,嘎松卓嘎,赵颖,刘治娟. 高原地区两种微生物鉴定系统对临床常见病原菌鉴定的一致性分析. 中国实用医药. 2023(07): 97-99 .
    5. 吴奇福. ALDI-TOF MS技术在微生物检验中的应用效果及效能ROC曲线. 中国医药指南. 2023(16): 121-124 .
    6. 任燕飞,张敏,杨涛,李荣凯,梁新. 下呼吸道感染病原体检测方法及相关病原体研究. 中国现代医生. 2022(25): 114-117 .
    7. 张鞠玲,康琳,鲍春梅,王欢,贾天野,陈素明,庞君丽,李伯安. MALDI-TOF MS技术直接鉴定无菌体液病原菌的效果评价. 国际检验医学杂志. 2022(24): 3016-3021 .

    Other cited types(1)

Catalog

    Article views (83) PDF downloads (7) Cited by(8)

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return