WANG Wei, XIANG Boyu, ZHANG Qianjiang, SUN Fei. Correlations of serum SIRT1, ESM-1 and FGF21 expression levels with therapeutic outcome in patients with sepsis-related acute respiratory distress syndrome[J]. Journal of Clinical Medicine in Practice, 2025, 29(3): 46-50, 56. DOI: 10.7619/jcmp.20244802
Citation: WANG Wei, XIANG Boyu, ZHANG Qianjiang, SUN Fei. Correlations of serum SIRT1, ESM-1 and FGF21 expression levels with therapeutic outcome in patients with sepsis-related acute respiratory distress syndrome[J]. Journal of Clinical Medicine in Practice, 2025, 29(3): 46-50, 56. DOI: 10.7619/jcmp.20244802

Correlations of serum SIRT1, ESM-1 and FGF21 expression levels with therapeutic outcome in patients with sepsis-related acute respiratory distress syndrome

More Information
  • Received Date: October 13, 2024
  • Revised Date: December 18, 2024
  • Objective 

    To investigate the correlations of the expression levels of serum silencing information regulatory factor 2-related enzyme 1 (SIRT1), endothelial cell-specific molecule-1 (ESM-1), and fibroblast growth factor-21 (FGF21) with therapeutic outcome in patients with sepsis-related acute respiratory distress syndrome (ARDS).

    Methods 

    A total of 140 patients with sepsis-related ARDS were selected and divided into good outcome group (n=96) and poor outcome group (n=44) according to the therapeutic outcome. The levels of serum SIRT1, ESM-1 and FGF21 were compared between the two groups, and the correlations of serum SIRT1, ESM-1 and FGF21 with the severity of the disease and therapeutic outcome were analyzed. The predictive values of serum SIRT1, ESM-1 and FGF21 for therapeutic outcome were evaluated.

    Results 

    The serum SIRT1 level in the poor outcome group was significantly lower, while the levels of ESM-1 and FGF21 were significantly higher than those in the good outcome group (P < 0.05). The serum SIRT1 level showed a significant gradual downward trend in mild, moderate, and severe patients, while the ESM-1 and FGF21 levels showed a significant gradual upward trend in mild, moderate, and severe patients (P < 0.05). Spearman correlation analysis showed that serum SIRT1 was significantly negatively correlated with disease severity, while ESM-1 and FGF21 were significantly positively correlated with disease severity (P < 0.05). Partial correlation analysis showed that serum SIRT1, ESM-1 and FGF21 were significantly correlated with the therapeutic outcome of ARDS patients with sepsis (P < 0.05). The receiver operating characteristic (ROC) curve showed that the area under the curve (AUC) of serum SIRT1, ESM-1 and FGF21 for predicting the treatment outcome of sepsis-related ARDS patients was 0.742, 0.838 and 0.796 respectively, with sensitivities of 77.27%, 77.27% and 70.45%, and specificities of 64.58%, 81.25% and 87.50%. The AUC of the combination of three indexes for predicting the therapeutic outcome of sepsis-related ARDS patients was 0.939, with a sensitivity of 88.64% and a specificity of 83.33%, which was significantly higher than the predictive value of the three indexes alone (P < 0.05).

    Conclusion 

    The levels of SIRT1, ESM-1 and FGF21 in the serum of sepsis-related ARDS patients are significantly correlated with the severity of the disease and the therapeutic outcome, and have the abilitis to independently predict the therapeutic outcome. The combined predictive value is even higher.

  • [1]
    CHAUDHURI D, NEI A M, ROCHWERG B, et al. 2024 focused update: guidelines on use of corticosteroids in sepsis, acute respiratory distress syndrome, and community-acquired pneumonia[J]. Crit Care Med, 2024, 52(5): e219-e233. doi: 10.1097/CCM.0000000000006172
    [2]
    XU C, ZHENG L, JIANG Y C, et al. A prediction model for predicting the risk of acute respiratory distress syndrome in sepsis patients: a retrospective cohort study[J]. BMC Pulm Med, 2023, 23(1): 78. doi: 10.1186/s12890-023-02365-z
    [3]
    JIANG T, LIU E R, LI Z Y, et al. SIRT1-Rab7 axis attenuates NLRP3 and STING activation through late endosomal-dependent mycophagy during sepsis-induced acute lung injury[J]. Int J Surg, 2024, 110(5): 2649-2668.
    [4]
    ZHENG X Y, HIGDON L, GAUDET A, et al. Endothelial cell-specific molecule-1 inhibits albuminuria in diabetic mice[J]. Kidney360, 2022, 3(12): 2059-2076. doi: 10.34067/KID.0001712022
    [5]
    HUEN S C, WANG A, FEOLA K, et al. Hepatic FGF21 preserves thermoregulation and cardiovascular function during bacterial inflammation[J]. J Exp Med, 2021, 218(10): e20202151. doi: 10.1084/jem.20202151
    [6]
    SINGER M, DEUTSCHMAN C S, SEYMOUR C W, et al. The third international consensus definitions for sepsis and septic shock (sepsis-3)[J]. JAMA, 2016, 315(8): 801-810. doi: 10.1001/jama.2016.0287
    [7]
    中国中西医结合学会第三届普通外科专业委员会, 《中国中西医结合外科杂志》学术编辑委员会, 王西墨, 等. 脓毒症肺损伤中西医结合诊治专家共识[J]. 中国中西医结合外科杂志, 2020, 26(3): 400-408. doi: 10.3969/j.issn.1007-6948.2020.03.002
    [8]
    中华医学会重症医学分会. 急性肺损伤/急性呼吸窘迫综合征诊断和治疗指南(2006)[J]. 中国实用外科杂志, 2007, 27(1): 1-6.
    [9]
    中国医师协会急诊医师分会, 中国研究型医院学会休克与脓毒症专业委员会. 中国脓毒症/脓毒性休克急诊治疗指南(2018)[J]. 中国急救医学, 2018, 38(9): 741-756. doi: 10.3969/j.issn.1002-1949.2018.09.001
    [10]
    DUAN S H, KIM S G, LIM H J, et al. Interferon-β alleviates sepsis by SIRT1-mediated blockage of endothelial glycocalyx shedding[J]. BMB Rep, 2023, 56(5): 314-319. doi: 10.5483/BMBRep.2023-0030
    [11]
    SMITH L M, YOZA B K, JASON HOTH J, et al. SIRT1 mediates septic cardiomyopathy in a murine model of polymicrobial sepsis[J]. Shock, 2020, 54(1): 96-101. doi: 10.1097/SHK.0000000000001429
    [12]
    俞凡, 赵林军, 吴锦鸿, 等. 血清沉默信息调节因子2相关酶1、血管紧张素转换酶2水平与脓毒症相关急性呼吸窘迫综合征的相关性[J]. 中国医刊, 2024, 59(2): 213-217. doi: 10.3969/j.issn.1008-1070.2024.02.022
    [13]
    DENG Z Y, SUN M M, WU J, et al. SIRT1 attenuates sepsis-induced acute kidney injury via Beclin1 deacetylation-mediated autophagy activation[J]. Cell Death Dis, 2021, 12(2): 217. doi: 10.1038/s41419-021-03508-y
    [14]
    SHEHATA A H, ANTER A F, AHMED A F. Role of SIRT1 in sepsis-induced encephalopathy: molecular targets for future therapies[J]. Eur J Neurosci, 2023, 58(10): 4211-4235. doi: 10.1111/ejn.16167
    [15]
    何思梦, 史佳, 李香云, 等. NAD+介导的SIRT1去乙酰化活性在小鼠内毒素性急性肺损伤中的作用[J]. 中华麻醉学杂志, 2021, 41(9): 1133-1137.
    [16]
    GAUDET A, ZHENG X Y, KAMBHAM N, et al. Esm-1 mediates transcriptional polarization associated with diabetic kidney disease[J]. Am J Physiol Renal Physiol, 2024, 326(6): F1016-F1031. doi: 10.1152/ajprenal.00419.2023
    [17]
    WEI P, ZONG B, LIU X K, et al. The relationship between the level of serum ESM-1 and lp-PLA2 in patients with acute ST-segment elevation myocardial infarction[J]. Clin Transl Sci, 2021, 14(1): 179-183. doi: 10.1111/cts.12838
    [18]
    裴戌锋, 严友纪, 黄芳, 等. 血清ESM-1、VE-Cad、CC16水平与脓毒症并发急性呼吸窘迫综合征患者炎性因子及预后的关系研究[J]. 现代生物医学进展, 2022, 22(13): 2570-2574.
    [19]
    范昊, 邵韩, 徐猛, 等. 脓毒症相关急性呼吸窘迫综合征患者血清Lac、D-D、sTM、ESM-1的表达及其临床意义[J]. 现代生物医学进展, 2023, 23(4): 749-754.
    [20]
    GATSEVA P, BLAZHEV A, YORDANOV Z, et al. Early diagnostic markers of late-onset neonatal sepsis[J]. Pediatr Rep, 2023, 15(3): 548-559.
    [21]
    XIE Y, LV H, CHEN D N, et al. Recombinant human thrombopoietin in alleviating endothelial cell injury in sepsis[J]. J Intensive Med, 2024, 4(3): 384-392.
    [22]
    FANG H, GHOSH S, SIMS L C, et al. FGF21 prevents low-protein diet-induced renal inflammation in aged mice[J]. Am J Physiol Renal Physiol, 2021, 321(3): F356-F368.
    [23]
    张龙玉, 梁连春, 马春华, 等. 脓毒症并发急性呼吸窘迫综合征患者血清FGF21、SP-A表达及其与预后的关系[J]. 临床和实验医学杂志, 2023, 22(1): 8-12.
    [24]
    CAI M S, YE H H, ZHU X Y, et al. Fibroblast growth factor 21 relieves lipopolysaccharide-induced acute lung injury by suppressing JAK2/STAT3 signaling pathway[J]. Inflammation, 2024, 47(1): 209-226.
    [25]
    LI X, SHEN H, ZHOU T H, et al. Does an increase in serum FGF21 level predict 28-day mortality of critical patients with sepsis and ARDS[J]. Respir Res, 2021, 22(1): 182.
    [26]
    SIAHANIDOU T, MARGELI A, BOURIKA V, et al. Association of fibroblast growth factor 21 plasma levels with neonatal sepsis: preliminary results[J]. Clin Chem Lab Med, 2019, 57(5): e83-e85. s
  • Cited by

    Periodical cited type(8)

    1. 唐水蓉,曹誉,彭燕平,曾秀英,付新华,邱林,黄冬胜,赖卫民,宋洁. 清肺汤联合头孢唑林钠治疗小儿急性化脓性扁桃体炎临床研究. 实用中医药杂志. 2023(06): 1156-1158 .
    2. 刘军. 探讨自拟金龙清肺汤对重症肺炎(痰热壅肺证)患者临床症状及炎性介质的影响. 系统医学. 2022(01): 5-9 .
    3. 李健珍. 加味瓜蒌薤白半夏汤治疗痰热蕴肺型慢性阻塞性肺疾病急性加重期的临床疗效. 齐齐哈尔医学院学报. 2021(11): 962-965 .
    4. 关宗耀. 二陈汤合三子养亲汤对慢性阻塞性肺疾病急性加重期(痰浊壅肺证)的效果影响. 中医临床研究. 2021(27): 23-25+35 .
    5. 杨华,谢建寰,吴鹏,吴洪皓,卢伟,李冬春. 自拟加味清热化痰汤治疗痰热蕴肺型AECOPD的疗效观察及对血清炎性标志物的影响. 中国医学创新. 2020(29): 91-94 .
    6. 赵静,郭昶. 清肺化痰汤对慢性阻塞性肺疾病急性加重期患者肺功能及炎性指标的影响. 中医临床研究. 2020(29): 37-39 .
    7. 关宗耀. 平喘止咳汤联合西医常规疗法治疗慢性阻塞性肺疾病急性加重期的临床观察. 中国民间疗法. 2020(23): 71-73 .
    8. 罗辉,张巍,李秀丽,张仲林,何再明. 清肺汤联合血液净化治疗急性呼吸窘迫综合征临床疗效观察. 中国中医急症. 2020(12): 2161-2164 .

    Other cited types(0)

Catalog

    Article views (43) PDF downloads (32) Cited by(8)

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return