ZHAO Yun, JIANG Wei, ZHENG Ruiqiang, YU Jiangquan. Prognostic analysis of sepsis-related liver injury and development of a prediction model based on machine learning method[J]. Journal of Clinical Medicine in Practice, 2025, 29(7): 32-37, 42. DOI: 10.7619/jcmp.20244867
Citation: ZHAO Yun, JIANG Wei, ZHENG Ruiqiang, YU Jiangquan. Prognostic analysis of sepsis-related liver injury and development of a prediction model based on machine learning method[J]. Journal of Clinical Medicine in Practice, 2025, 29(7): 32-37, 42. DOI: 10.7619/jcmp.20244867

Prognostic analysis of sepsis-related liver injury and development of a prediction model based on machine learning method

More Information
  • Received Date: October 15, 2024
  • Revised Date: December 23, 2024
  • Objective 

    To analyze the prognosis of patients with sepsis-related liver injury (SRLI) and establish a prediction model for the occurrence of SRLI after ICU admission in sepsis patients using eight machine learning methods.

    Methods 

    Patients who met the sepsis diagnostic criteria and had no underlying liver or biliary diseases were included from the MIMIC-IV database, and were classified into SRLI and non-SRLI groups based on liver enzymes ≥5 times the upper limit of normal (ULN) or bilirubin ≥2.0mg/dL. Chi-square test, multivariate Logistic regression analysis, and propensity score matching were used to analyze the mortality risk between the two groups. Eight machine learning algorithms[Logistic regression, classification and regression tree (CART), random forest (RF), support vector machine (SVM), K-nearest neighbors (K-NN), naive Bayes method (NBM), extreme gradient boosting (XGBoost), and gradient boosting decision tree (GBDT)]were employed to construct and validate the SRLI prediction model.

    Results 

    The chi-square test (P < 0.001), multivariate Logistic regression analysis (P < 0.05), and log-rank test after propensity score matching (P < 0.05) all indicated that SRLI increased the mortality risk of patients. Among the SRLI prediction models, RF algorithm had the highest area under the curve (AUC), with its value of 0.866, followed by GBDT (AUC=0.862), Logistic regression (AUC=0.859), SVM (AUC=0.837), NBM (AUC=0.830), CART (AUC=0.771), XGBoost (AUC=0.764), and K-NN (AUC=0.722).

    Conclusion 

    SRLI increases the mortality risk of patients. The prediction model constructed using the RF algorithm has high diagnostic value.

  • [1]
    EVANS L, RHODES A, ALHAZZANI W, et al. Surviving sepsis campaign: international guidelines for management of sepsis and septic shock 2021[J]. Intensive Care Med, 2021, 47(11): 1181-1247. doi: 10.1007/s00134-021-06506-y
    [2]
    邢冬梅, 隋冰冰, 王磊. 老年脓毒症患者住院期间死亡风险预测模型的建立与验证[J]. 实用临床医药杂志, 2024, 28(8): 39-44. doi: 10.7619/jcmp.20233722
    [3]
    DHAINAUT J F, MARIN N, MIGNON A, et al. Hepatic response to sepsis: interaction between coagulation and inflammatory processes[J]. Crit Care Med, 2001, 29(7 Suppl): S42-S47.
    [4]
    PEREZ RUIZ DE GARIBAY A, KORTGEN A, LEONHARDT J, et al. Critical care hepatology: definitions, incidence, prognosis and role of liver failure in critically ill patients[J]. Crit Care, 2022, 26(1): 289. doi: 10.1186/s13054-022-04163-1
    [5]
    VAN DEN BROECKE A, VAN COILE L, DECRUYENAERE A, et al. Epidemiology, causes, evolution and outcome in a single-center cohort of 1116 critically ill patients with hypoxic hepatitis[J]. Ann Intensive Care, 2018, 8(1): 15. doi: 10.1186/s13613-018-0356-z
    [6]
    KOBASHI H, TOSHIMORI J, YAMAMOTO K. Sepsis-associated liver injury: incidence, classification and the clinical significance[J]. Hepatol Res, 2013, 43(3): 255-266. doi: 10.1111/j.1872-034X.2012.01069.x
    [7]
    LEVY M M, EVANS L E, RHODES A. The surviving sepsis campaign bundle: 2018 update[J]. Intensive Care Med, 2018, 44(6): 925-928. doi: 10.1007/s00134-018-5085-0
    [8]
    SEYMOUR C W, LIU V X, IWASHYNA T J, et al. Assessment of clinical criteria for sepsis: for the third international consensus definitions for sepsis and septic shock (sepsis-3)[J]. JAMA, 2016, 315(8): 762-774. doi: 10.1001/jama.2016.0288
    [9]
    HU W H, CHEN H, MA C C, et al. Identification of indications for albumin administration in septic patients with liver cirrhosis[J]. Crit Care, 2023, 27(1): 300. doi: 10.1186/s13054-023-04587-3
    [10]
    WANG D W, YIN Y M, YAO Y M. Advances in sepsis-associated liver dysfunction[J]. Burns Trauma, 2014, 2(3): 97-105. doi: 10.4103/2321-3868.132689
    [11]
    HORVATITS T, DROLZ A, TRAUNER M, et al. Liver injury and failure in critical illness[J]. Hepatology, 2019, 70(6): 2204-2215. doi: 10.1002/hep.30824
    [12]
    JONSDOTTIR S, ARNARDOTTIR M B, ANDRESSON J A, et al. Prevalence, clinical characteristics and outcomes of hypoxic hepatitis in critically ill patients[J]. Scand J Gastroenterol, 2022, 57(3): 311-318. doi: 10.1080/00365521.2021.2005136
    [13]
    孙维维, 黄晓英, 王亚东. HELENICC评分预测脓毒症相关急性肾损伤行持续肾脏替代治疗患者早期病死率的价值[J]. 实用临床医药杂志, 2023, 27(15): 29-34. doi: 10.7619/jcmp.20231689
    [14]
    WOZNICA E A, INGLOT M, WOZNICA R K, et al. Liver dysfunction in sepsis[J]. Adv Clin Exp Med, 2018, 27(4): 547-551. doi: 10.17219/acem/68363
    [15]
    GINÈS P, SCHRIER R W. Renal failure in cirrhosis[J]. N Engl J Med, 2009, 361(13): 1279-1290. doi: 10.1056/NEJMra0809139
    [16]
    XIE T H, XIN Q, CAO X R, et al. Clinical characteristics and construction of a predictive model for patients with sepsis related liver injury[J]. Clin Chim Acta, 2022, 537: 80-86. doi: 10.1016/j.cca.2022.10.004
    [17]
    DAI J M, GUO W N, TAN Y Z, et al. Wogonin alleviates liver injury in sepsis through Nrf2-mediated NF-κB signalling suppression[J]. J Cell Mol Med, 2021, 25(12): 5782-5798. doi: 10.1111/jcmm.16604
    [18]
    HUANG H, TOHME S, AL-KHAFAJI A B, et al. Damage-associated molecular pattern-activated neutrophil extracellular trap exacerbates sterile inflammatory liver injury[J]. Hepatology, 2015, 62(2): 600-614. doi: 10.1002/hep.27841
  • Cited by

    Periodical cited type(11)

    1. 黄珍,陶克奇,胡杏燕. 路径导向性健康教育对深静脉血栓形成介入术后患者的影响. 齐鲁护理杂志. 2024(06): 5-8 .
    2. 刘茜巍,马琴,帕热旦木·托乎提. 基于前馈控制构建终末期肾病血液透析患者干预措施及其应用. 中国医药导报. 2024(07): 186-189 .
    3. 李静,张品. 临床护理管理路径对肝病存在VTE风险患者自我护理能力的影响. 婚育与健康. 2024(07): 142-144 .
    4. 吕晓兰,刘泽梅,章月照. 前馈控制护理策略预防肿瘤化疗深静脉置管患者相关并发症的效果. 中国医药导报. 2024(11): 152-155 .
    5. 孔祥欣,蔡燕萍,郑国华. 基于综合转变模型的分阶段精细化护理干预慢性乙型肝炎患者的效果. 慢性病学杂志. 2024(06): 936-939 .
    6. 陈芬芬,蒋赛珍,刘方艳. 预备控制护理联合积极共情反馈干预在玻璃体切除术联合视网膜激光光凝术患者中的应用效果. 医疗装备. 2024(10): 147-149+153 .
    7. 丁雪丽,贾莉霞,李存存. 路径式前馈控制护理模式在重型肝炎患者中的应用价值. 国际医药卫生导报. 2024(14): 2437-2441 .
    8. 许敏. 基于“治未病”健康护理模式在病毒性肝炎肝硬化中的应用. 承德医学院学报. 2024(05): 410-413 .
    9. 傅金艳,胡蓉. 信息化监护联合前馈控制管理在老年白内障连台手术患者中的效果. 黑龙江中医药. 2024(03): 305-307 .
    10. 李靓萍. 预先控制模式联合叙事干预在肝硬化失代偿期患者中的应用. 黑龙江医学. 2024(23): 2927-2929 .
    11. 杨霞,万丽文. 前馈控制护理对超声引导下穿刺活检患者一次穿刺成功率及并发症的影响研究. 现代诊断与治疗. 2023(07): 1091-1093 .

    Other cited types(0)

Catalog

    Article views (38) PDF downloads (6) Cited by(11)

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return