Research on R language time series and autoregressive integrated moving average model for predication of receiving and use of anesthetic consumables
-
摘要:目的 运用自回归积分滑动平均模型(ARIMA)建立适合的老年患者特色手术科室耗材领用支出的医学经济学模型,预测麻醉科耗材需求的变化趋势。方法 采用R软件对本院麻醉科2013年1月—2019年12月耗材领用支出数据建立ARIMA模型,将2020年1—12月耗材领用支出的实际值与预测值分别进行比较,评价模型的预测性能。结果 本院麻醉科耗材领用支出在每年2月出现最低值,5月呈现最高峰。建立ARIMA (0,1,1)(0,0,1)[12]模型对麻醉科耗材需求进行预测,ARIMA模型较好地拟合和预测了周期性波动。ARIMA (0,1,1)(0,0,1)[12]模型预测的耗材支出在2020年1—12月会有小幅波动。结论 ARIMA (0,1,1)(0,0,1)[12]模型较好地拟合了麻醉科的耗材需求,有助于优化科室决策支持系统及老年择期手术患者围术期护理管理。
-
关键词:
- 医学经济学 /
- 老年患者 /
- 决策支持系统 /
- 管理 /
- 自回归积分滑动平均模型
Abstract:Objective To establish a suitable medical economics model of receiving and use of specialized surgery consumables in the elderly patient in Department of Anesthesiology by using the autoregressive integrated moving average (ARIMA) model, and to predict the changing trend of the consumables demand in Department of Anesthesiology.Methods R software was used to establish the ARIMA model based on the data of consumables acquisition and expenditure of Anesthesiology Department in authors' hospital from January 2013 to December 2019. The actual value and the predicted value of consumables acquisition and expenditure were compared from January to December 2020, and prediction performance of the model was evaluated.Results The consumption expenditure of Anesthesiology Department in authors' hospital was the lowest in February and the highest in May every year. ARIMA(0, 1, 1)(0, 0, 1)[12] model was established to predict the consumable demand of Anesthesiology Department, and ARIMA model met and predicted the periodic fluctuation well. ARIMA(0, 1, 1)(0, 0, 1)[12] model predicted that the consumption of consumables will fluctuate slightly from January to December in 2020.Conclusion ARIMA(0, 1, 1)(0, 0, 1)[12] model can better fit the needs of consumables in Anesthesiology Department, which is helpful to optimize the department decision support system and perioperative nursing management of elderly patients undergoing elective surgery. -
急性大面积缺血性脑梗死(AICI)是常见脑患者的生命健康具有较大危害。有报道[2]指出,血小板的活化以及血管内皮的损伤与AICI的发病密切相关。CD62p与CD63主要由活化血小板表达,是评价血栓风险的标志物[3],随着临床研究的不断深入,其与脑梗死的发病机制受到更多重视,其动态表达可为临床工作者提供量化血小板功能的检测指标[4]。本研究通过探讨血小板膜糖蛋白CD62p、CD63及血小板活化因子(PAF)表达水平与AICI患者预后的关系,为临床治疗提供数据参考,现报告如下。
1. 资料和方法
1.1 一般资料
选择从2019年2月—2020年6月在本院接受治疗的AICI患者200例为观察对象并纳入观察组,选取健康体检者50例为对照组。纳入标准: 患者均符合AICI的有关诊断标准; 经CT或MRI检查确诊者; 发病至入院时间 < 48 h, 且2周内未口服抗凝和抗血小板以及溶栓药物者; 患者已知情并签署同意书。排除标准: 有恶性肿瘤者; 有其他类别的心脑血管疾病者; 有血液疾病者; 存在精神疾病者。观察组男135例,女65例; 年龄52~68岁,平均(62.33±2.14)岁。观察组根据90 d内存活情况,分为死亡组(32例)和存活组(168例)。对照组男30例,女20例; 年龄51~66岁,平均(62.40±2.23)岁。观察组和对照组一般资料比较,差异无统计学意义(P>0.05)。本研究通过医院的伦理委员会备案。
1.2 方法
抽取各组患者空腹肘关节血5 mL, 乙二胺四乙酸二钾(EDTA-K2)抗凝,选择贝克曼库尔特公司生产的EPICSXL流式细胞仪和配套的试剂,分别检测CD62p及CD63水平。另取2 mL给予3 000 r/min离心15 min, 然后通过酶联免疫法检测PAF水平,试剂盒均购于深圳的晶美工程公司。本研究观察组采用常规治疗,根据患者具体情况采取溶栓、抗血小板、抗凝、降纤、血管介入等方法进行治疗。
观察组患者出院后第90天进行门诊或电话随访。采用改良Rankin量表(mRS) 进行评分。0分为完全无症状; 1分为有症状,但无明显功能障碍; 2分为轻度残疾; 3分为中度残疾,能独立行走; 4分为中重度残疾,生活需要他人帮助; 5分为重度残疾,生活完全依赖于他人; 6分为死亡。评分为0~2分为预后良好组, 3~6分为预后不良组。
1.3 观察指标
对比不同组患者CD62p、CD63及PAF水平。
1.4 统计学分析
采用SPSS 21.0软件进行数据分析,计量资料用(x±s)表示,组间比较采用t检验, P < 0.05为差异有统计学意义。
2. 结果
2.1 观察组与对照组患者血清CD62p、CD63及PAF水平比较
观察组患者CD62p、CD63及PAF水平均高于对照组,差异有统计学意义(P < 0.05)。见表 1。
表 1 观察组与对照组血清CD62p、CD63及PAF水平比较(x±s)组别 n CD62p/% CD63/% PAF/(ng/mL) 观察组 200 12.73±2.35* 14.58±2.82* 108.84±15.33* 对照组 50 5.36±1.30 6.50±1.58 62.83±15.29 PAF: 血小板活化因子。与对照组比较, * P < 0.05。 2.2 死亡组与存活组脑梗死患者血清CD62p、CD63及PAF水平比较
死亡组脑梗死患者血清CD62p、CD63及PAF水平均高于存活组,差异有统计学意义(P < 0.05)。见表 2。
表 2 死亡组与存活组血清CD62p、CD63及PAF水平比较(x±s)组别 n CD62p/% CD63/% PAF/(ng/mL) 存活组 168 10.26±3.18 12.58±2.27 87.23±13.29 死亡组 32 13.69±2.42* 14.67±3.04* 106.79±14.42* PAF: 血小板活化因子。与存活组比较, * P < 0.05。 2.3 预后良好组与预后不良组脑梗死患者血清CD62p、CD63及PAF水平比较
预后不良组脑梗死患者血清CD62p、CD63及PAF水平均高于预后良好组,差异有统计学意义(P < 0.05)。见表 3。
表 3 预后良好组与预后不良组血清CD62p、CD63及PAF水平比较(x±s)组别 n CD62p/% CD63/% PAF/(ng/mL) 预后不良组 25 17.01±3.12* 19.84±2.54* 136.75±12.64* 预后良好组 175 9.83±2.19 9.32±1.13 78.42±7.53 PAF: 血小板活化因子。与预后良好组比较, * P < 0.05。 3. 讨论
临床上大面积AICI是由于脑部发生急性血管阻塞而导致血供中断的脑血管类疾病[5]。报道[6]指出,患者机体内的血小板活化以及血管内皮损伤可能参与了AICI。当发生血流状态变化或血管损伤等情况时,患者机体逐渐调节至血栓前的状态,甚至是形成血栓症状[7], 这使得受损血管壁自主地暴露胶原,同时还会释放出凝血酶以及血小板的诱导因子,导致血小板不断黏附在血管壁上,从而产生形态改变及细胞内的生化反应,最终诱发了AICI[8]。
本研究通过比较发现观察组患者血清CD62p、CD63及PAF水平均高于对照组,这提示CD62p、CD63及PAF可能参与了AICI的发生,提示血小板活化在ACI发生中发挥重要作用。分析原因, AICI患者机体内黏附型血小板能够连接相应的纤维蛋白原,并使得血小板发生聚集,致使动脉血栓产生,引起血管闭塞并导致梗死。而活化后的血小板释放出的有关活性物质能够对血管壁产生作用,促使机体的平滑肌细胞发生收缩,且血管痉挛,从而使血管闭塞的症状加重[9]。而CD62p及CD63均属于血小板的膜糖蛋白,其中前者可在α颗粒膜表达,后者主要分布在处于静止状态的溶酶体膜中[10]。在血小板发生活化后,α颗粒膜能融合血小板的有关胞浆膜,此时CD62p主要暴露在血小板的膜表层,而CD63能够脱颗粒表达于血小板的膜表层[11], 这表明二者的高表达能够标志性地反映出血小板的活化以及血栓形成。PAF和机体内花生四烯酸的代谢联系紧密[12-13], 可由血小板的内皮细胞、肥大细胞以及巨噬细胞共同参与,从而在机体变态反应或炎性反应中产生重要作用[14-15], 同时还能参与AICI患者神经功能的修复,在生理状态下还可调节脑部的兴奋型递质的释放进而影响相关突触的可塑性。同时,本研究观察组存活者的CD62p、CD63及PAF水平均明显低于死亡者,预后不良脑梗死患者血清CD62p、CD63及PAF水平均明显高于预后良好脑梗死患者,提示CD62p、CD63及PAF水平与预后有关。CD62P、CD63及PAF为最具有特征性的血小板活化分子标志物,大量释放后会启动和扩大血栓形成,进而加重病情[16], 临床上可针对上述指标实施重点监测,从而更好地评估AICI患者的临床治疗情况及预后。
综上所述, AICI患者的血小板膜糖蛋白CD62p、CD63及PAF动态表达水平升高,且这3项指标与患者的治疗及预后均呈负相关。
-
图 3 ARIMA(0, 1, 1)(0, 0, 1)[12]模型预测价值
蓝色曲线: 2018年7月—2019年7月麻醉科耗材领用支出; 阴影部分: 95%可信区间。
表 1 ARIMA模型极大似然方法检验和AIC
ARIMA模型 ma s. e. sma s. e log likelihood AIC ARIMA(0, 1, 1)(0, 0, 1)[12] -0.811 2 0.062 7 0.335 7 0.146 6 -27.08 60.17 ARIMA(1, 1, 0)(1, 0, 0)[12] -0.641 8 0.094 3 0.200 2 0.200 2 -30.26 66.53 ARIMA(0, 1, 1)(1, 0, 1)[12] -0.806 7 0.063 6 0.530 5 0.374 1 -26.94 61.88 ARIMA(1, 1, 1)(0, 0, 1)[12] -0.747 4 0.106 9 0.361 2 0.147 4 -26.18 60.36 ARIMA(0, 1, 2)(0, 0, 1)[12] -0.912 8 0.116 1 0.354 5 0.146 6 -26.45 60.90 -
[1] SCHWINGSHACKL A, ANAND K J S. Editorial: work-life balance: essential or ephemeral[J]. Front Pediatr, 2017, 5: 108. doi: 10.3389/fped.2017.00108
[2] DESAI V, CHAN P H, PRENTICE H A, et al. Is anesthesia technique associated with a higher risk of mortality or complications within 90 days of surgery for geriatric patients with hip fractures[J]. Clin Orthop Relat Res, 2018, 476(6): 1178-1188. doi: 10.1007/s11999.0000000000000147
[3] DONNELLY G T, FORESTER L T, DONNELLY L F. Reliable and efficient supply chain management in radiology: implementation of a two-Bin demand-flow system[J]. J Am Coll Radiol, 2016, 13(4): 426-428. doi: 10.1016/j.jacr.2015.09.006
[4] GAO J Q, LI J Y, WANG M Q. Time series analysis of cumulative incidences of typhoid and paratyphoid fevers in China using both Grey and SARIMA models[J]. PLoS One, 2020, 15(10): e0241217. doi: 10.1371/journal.pone.0241217
[5] KATRIS C. A time series-based statistical approach for outbreak spread forecasting: Application of COVID-19 in Greece[J]. Expert Syst Appl, 2021, 166: 114077. doi: 10.1016/j.eswa.2020.114077
[6] ADEYINKA D A, MUHAJARINE N. Time series prediction of under-five mortality rates for Nigeria: comparative analysis of artificial neural networks, Holt-Winters exponential smoothing and autoregressive integrated moving average models[J]. BMC Med Res Methodol, 2020, 20(1): 292. doi: 10.1186/s12874-020-01159-9
[7] WEI W D, JIANG J J, LIANG H, et al. Application of a combined model with autoregressive integrated moving average (ARIMA) and generalized regression neural network (GRNN) in forecasting hepatitis incidence in Heng County, China[J]. PLoS One, 2016, 11(6): e0156768. doi: 10.1371/journal.pone.0156768
[8] RUBAIHAYO J, TUMWESIGYE N M, KONDE-LULE J, et al. Forecast analysis of any opportunistic infection among HIV positive individuals on antiretroviral therapy in Uganda[J]. BMC Public Health, 2016, 16(1): 766. doi: 10.1186/s12889-016-3455-5
[9] LUO L, LUO L, ZHANG X L, et al. Hospital daily outpatient visits forecasting using a combinatorial model based on ARIMA and SES models[J]. BMC Health Serv Res, 2017, 17(1): 469. doi: 10.1186/s12913-017-2407-9
[10] PACKARD G C. Misconceptions about logarithmic transformation and the traditional allometric method[J]. Zoology (Jena), 2017, 123: 115-120. doi: 10.1016/j.zool.2017.07.005
[11] WANG Y B, XU C J, ZHANG S K, et al. Temporal trends analysis of tuberculosis morbidity in mainland China from 1997 to 2025 using a new SARIMA-NARNNX hybrid model[J]. BMJ Open, 2019, 9(7): e024409. doi: 10.1136/bmjopen-2018-024409
[12] ANWAR M Y, LEWNARD J A, PARIKH S, et al. Time series analysis of malaria in Afghanistan: using ARIMA models to predict future trends in incidence[J]. Malar J, 2016, 15(1): 566. doi: 10.1186/s12936-016-1602-1
[13] GARLICH J M, PUJARI A, DEBBI E M, et al. Time to block: early regional anesthesia improves pain control in geriatric hip fractures[J]. J Bone Jo Surg Am Vol, 2020, 102(10): 866-872. doi: 10.2106/JBJS.19.01148
[14] LIAO Z Y, ZHANG X N, ZHANG Y H, et al. Seasonality and trend forecasting of tuberculosis incidence in Chongqing, China[J]. Interdiscip Sci, 2019, 11(1): 77-85. doi: 10.1007/s12539-019-00318-x
[15] FLEUREN L M, KLAUSCH T L T, ZWAGER C L, et al. Machine learning for the prediction of Sepsis: a systematic review and meta-analysis of diagnostic test accuracy[J]. Intensive Care Med, 2020, 46(3): 383-400. doi: 10.1007/s00134-019-05872-y
[16] BUZA K, PE?KA L, KOLLER J. Modified linear regression predicts drug-target interactions accurately[J]. PLoS One, 2020, 15(4): e0230726. doi: 10.1371/journal.pone.0230726
[17] KRIEGESKORTE N, GOLAN T. Neural network models and deep learning[J]. Curr Biol, 2019, 29(7): R231-R236. doi: 10.1016/j.cub.2019.02.034
[18] GARCIA T P, MA Y. Simultaneous treatment of unspecified heteroskedastic model error distribution and mismeasured covariates for restricted moment models[J]. J Econom, 2017, 200(2): 194-206. doi: 10.1016/j.jeconom.2017.06.005
[19] ALIM M, YE G H, GUAN P, et al. Comparison of ARIMA model and XGBoost model for prediction of human brucellosis in mainland China: a time-series study[J]. BMJ Open, 2020, 10(12): e039676. doi: 10.1136/bmjopen-2020-039676
[20] MIYAHIRA A, TADA K, ISHIMA M, et al. A trial of nursing cost accounting using nursing practice data on a hospital information system[J]. Stud Health Technol Inform, 2015, 216: 944.
[21] LIU T Z, SHEN A Z, HU X J, et al. SPD-based logistics management model of medical consumables in hospitals[J]. Iran J Public Health, 2016, 45(10): 1288-1299. http://pdfs.semanticscholar.org/8d42/e79e83d4f6c3bce9b434660b573f36fde0ee.pdf
-
期刊类型引用(6)
1. 韩秀燕,许华,张沁丽. 血清尿酸水平与脑血管病因果关系的双向两样本孟德尔随机化研究. 实用临床医药杂志. 2025(01): 66-72 . 本站查看
2. 罗丽,刘锋伟,马丹丹,张玮. 靳三针联合感觉统合训练治疗儿童语言障碍对语言功能及适应行为的影响. 实用中医药杂志. 2024(04): 749-751 . 百度学术
3. 刘洁洁,唐纯志. 靳三针疗法治疗痴呆Meta分析. 中国中医药图书情报杂志. 2024(04): 171-177 . 百度学术
4. 唐青青,李铁,李霞,杨宁,张世苹,张凯强,萨仁. 萨仁“南海调神”针法经验浅析. 中国针灸. 2024(10): 1177-1180 . 百度学术
5. 刘红喜,路梦颖,梁晓,魏竞竞,刘悦,陈云梦,迟显苏,付国静,张允岭. 基于髓海理论运用填精益髓法辨治中医脑病. 中医杂志. 2023(18): 1877-1884 . 百度学术
6. 杜明明,刘仕杰,宋金萍,谷慧敏. 补髓通窍益脑汤联合靳三针对血管性痴呆患者的影响. 光明中医. 2023(18): 3564-3566 . 百度学术
其他类型引用(2)