Research progress on resistance mechanism of tigecycline resistance in carbapenem-resistant Klebsiella pneumoniae
-
摘要: 肺炎克雷伯菌(KP)是呼吸道感染常见致病菌, 近年来随着碳青霉烯类抗生素的广泛使用,耐碳青霉烯肺炎克雷伯菌(CRKP)的检出率上升,其多重耐药性给临床治疗带来巨大挑战。替加环素(TGC)属于一种极少数对多重耐药菌有良好效能的药物。本文就TGC耐药的CRKP菌株(T-CRKP)的耐药机制研究情况展开综述,为预防和控制该菌的传播流行提供依据。Abstract: Klebsiella pneumoniae (KP) is a common pathogen in clinical upper respiratory tract infection. In recent years, with the widespread use of carbapenem antibiotics, the detection rate of carbapenem-resistant Klebsiella pneumoniae (CRKP) has increased year by year. Its multiple drug resistance brings severe challenges to clinical treatment. Tigecycline(TGC) is one of the few drugs with good efficacy against multi-drug-resistant bacteria. This paper reviewed the research progress on the drug-resistant mechanism of TGC-resistant CRKP strain (T-CRKP), in order to provide a basis for preventing and controlling the spread and epidemic of tigecycline-resistant strains.
-
-
[1] SQUIRES K M, NGUYEN M H, SHIELDS R K, et al. Sequence type-258 carbapenem-resistant Klebsiella pneumoniae isolates in which ceftazidime-avibactam resistance emerged are not hypermutators[J]. Diagn Microbiol Infect Dis, 2020, 96(3): 114954. doi: 10.1016/j.diagmicrobio.2019.114954
[2] SHAMINA O V, KRYZHANOVSKAYA O A, LAZAREVA A V, et al. Emergence of a ST307 clone carrying a novel insertion element MITEKpn1 in the mgrB gene among carbapenem-resistant Klebsiella pneumoniae from Moscow, Russia[J]. Int J Antimicrob Agents, 2020, 55(2): 105850. doi: 10.1016/j.ijantimicag.2019.11.007
[3] 梁武华, 梁敏煜, 周海燕, 等. 耐碳青霉烯类肺炎克雷伯菌耐药监测及分子耐药机制的研究进展[J]. 当代医学, 2021, 27(19): 191-194. doi: 10.3969/j.issn.1009-4393.2021.19.079 [4] 陈艳慧, 胡龙华, 钟桥石, 等. 肺炎克雷伯菌临床分布特征及耐药性变迁[J]. 实验与检验医学, 2018, 36(3): 326-329. doi: 10.3969/j.issn.1674-1129.2018.03.010 [5] HU Y M, PING Y T, LI L Q, et al. A retrospective study of risk factors for carbapenem-resistant Klebsiella pneumoniae acquisition among ICU patients[J]. J Infect Dev Ctries, 2016, 10(3): 208-213. doi: 10.3855/jidc.6697
[6] RAHIM G R, GUPTA N, MAHESHWARI P, et al. Monomicrobial Klebsiella pneumoniae necrotizing fasciitis: an emerging life-threatening entity[J]. Clin Microbiol Infect, 2019, 25(3): 316-323. doi: 10.1016/j.cmi.2018.05.008
[7] 毛昳涵. 碳青霉烯耐药肺炎克雷伯菌院内流行及替加环素耐药机制研究[D]. 杭州: 浙江大学, 2019. [8] REYES J, AGUILAR A C, CAICEDO A. Carbapenem-resistant Klebsiella pneumoniae: microbiology key points for clinical practice[J]. Int J Gen Med, 2019, 12: 437-446. doi: 10.2147/IJGM.S214305
[9] AGYEMAN A A, BERGEN P J, RAO G G, et al. A systematic review and meta-analysis of treatment outcomes following antibiotic therapy among patients with carbapenem-resistant Klebsiella pneumoniae infections[J]. Int J Antimicrob Agents, 2020, 55(1): 105833. doi: 10.1016/j.ijantimicag.2019.10.014
[10] CENTERS FOR DISEASE CONTROL AND PREVENTION (CDC). Vital signs: carbapenem-resistant Enterobacteriaceae[J]. MMWR Morb Mortal Wkly Rep, 2013, 62(9): 165-170.
[11] 胡付品, 郭燕, 朱德妹, 等. 2020年CHINET中国细菌耐药监测[J]. 中国感染与化疗杂志, 2021, 21(4): 377-387. https://www.cnki.com.cn/Article/CJFDTOTAL-KGHL202104001.htm [12] 张娣. 一株泛耐药肺炎克雷伯菌耐药机制研究[D]. 杭州: 浙江大学, 2020. [13] DOAN T L, FUNG H B, MEHTA D, et al. Tigecycline: a glycylcycline antimicrobial agent[J]. Clin Ther, 2006, 28(8): 1079-1106. doi: 10.1016/j.clinthera.2006.08.011
[14] 郭咸希, 何文, 陈莹, 等. 我院住院患者耐碳青霉烯肺炎克雷伯菌感染的回顾性分析[J]. 中国药师, 2021, 24(2): 317-321. https://www.cnki.com.cn/Article/CJFDTOTAL-ZYSG202102023.htm [15] FRITZENWANKER M, IMIRZALIOGLU C, HEROLD S, et al. Treatment options for carbapenem- resistant gram-negative infections[J]. Dtsch Arztebl Int, 2018, 115(20/21): 345-352.
[16] PAPADIMITRIOU-OLIVGERIS M, BARTZAVALI C, NIKOLOPOULOU A, et al. Impact of tigecycline's MIC in the outcome of critically ill patients with carbapenemase-producing Klebsiella pneumoniae bacteraemia treated with tigecycline monotherapy-validation of 2019's EUCAST proposed breakpoint changes[J]. Antibiotics (Basel), 2020, 9(11): E828. doi: 10.3390/antibiotics9110828
[17] HACKEL M, KAZMIERCZAK K M, HOBAN D J, et al. Assessment of the in vitro activity of ceftazidime-avibactam against multidrug-resistant Klebsiella spp. collected in the INFORM global surveillance study, 2012 to 2014[J]. Antimicrob Agents Chemother, 2016, 60(8): 4677-4683.
[18] KHURSHID M, RASHID A, HUSNAIN M, et al. In-vitro assessment of the therapeutic potential of polymyxins and tigecycline against multidrugresistant Acinetobacter isolates from infected wounds[J]. J Ayub Med Coll Abbottabad, 2020, 32(4): 459-464.
[19] GRIMSEY E M, WESTON N, RICCI V, et al. Overexpression of RamA, which regulates production of the multidrug resistance efflux pump AcrAB-TolC, increases mutation rate and influences drug resistance phenotype[J]. Antimicrob Agents Chemother, 2020, 64(4): e02460-e02419.
[20] SUBHADRA B, KIM J, KIM D H, et al. Local repressor AcrR regulates AcrAB efflux pump required for biofilm formation and virulence in Acinetobacter nosocomialis[J]. Front Cell Infect Microbiol, 2018, 8: 270. doi: 10.3389/fcimb.2018.00270
[21] 张娣, 周志慧. 碳青霉烯耐药肺炎克雷伯菌对替加环素的耐药机制研究进展[J]. 世界最新医学信息文摘: 连续型电子期刊, 2020, 20(24): 47-49, 54. doi: 10.3969/j.issn.1671-3141.2020.24.020 [22] LI J, ZHANG H Y, NING J N, et al. The nature and epidemiology of OqxAB, a multidrug efflux pump[J]. Antimicrob Resist Infect Control, 2019, 8: 44. doi: 10.1186/s13756-019-0489-3
[23] NIELSEN L E, SNESRUD E C, ONMUS-LEONE F, et al. IS5 element integration, a novel mechanism for rapid in vivo emergence of tigecycline nonsusceptibility in Klebsiella pneumoniae[J]. Antimicrob Agents Chemother, 2014, 58(10): 6151-6156. doi: 10.1128/AAC.03053-14
[24] JUAN C H, HUANG Y W, LIN Y T, et al. Risk factors, outcomes, and mechanisms of tigecycline-nonsusceptible Klebsiella pneumoniae bacteremia[J]. Antimicrob Agents Chemother, 2016, 60(12): 7357-7363. doi: 10.1128/AAC.01503-16
[25] AKIYAMA T, PRESEDO J, KHAN A A. The tetA gene decreases tigecycline sensitivity of Salmonella enterica isolates[J]. Int J Antimicrob Agents, 2013, 42(2): 133-140. doi: 10.1016/j.ijantimicag.2013.04.017
[26] LINKEVICIUS M, SANDEGREN L, ANDERSSON D I. Potential of tetracycline resistance proteins to evolve tigecycline resistance[J]. Antimicrob Agents Chemother, 2016, 60(2): 789-796. doi: 10.1128/AAC.02465-15
[27] FOONG W E, WILHELM J, TAM H K, et al. Tigecycline efflux in Acinetobacter baumannii is mediated by TetA in synergy with RND-type efflux transporters[J]. J Antimicrob Chemother, 2020, 75(5): 1135-1139. doi: 10.1093/jac/dkaa015
[28] 赖宁燕, 虞亦鸣, 邓在春. 碳青霉烯类耐药肺炎克雷伯杆菌耐药机制及治疗策略研究进展[J]. 中国现代医生, 2019, 57(36): 163-168. https://www.cnki.com.cn/Article/CJFDTOTAL-ZDYS201936042.htm [29] BENDER J K, KLARE I, FLEIGE C, et al. A nosocomial cluster of tigecycline- and vancomycin-resistant Enterococcus faecium isolates and the impact of rpsJ and tet(M) mutations on tigecycline resistance[J]. Microb Drug Resist, 2020, 26(6): 576-582. doi: 10.1089/mdr.2019.0346
[30] BEABOUT K, HAMMERSTROM T G, PEREZ A M, et al. The ribosomal S10 protein is a general target for decreased tigecycline susceptibility[J]. Antimicrob Agents Chemother, 2015, 59(9): 5561-5566. doi: 10.1128/AAC.00547-15
[31] HE F, SHI Q C, FU Y, et al. Tigecycline resistance caused by rpsJ evolution in a 59-year-old male patient infected with KPC-producing Klebsiella pneumoniae during tigecycline treatment[J]. Infect Genet Evol, 2018, 66: 188-191. doi: 10.1016/j.meegid.2018.09.025
[32] 朱瑞奇, 吴韩, 曾杨梅, 等. 肠杆菌科细菌替加环素耐药机制的研究进展[J]. 江西畜牧兽医杂志, 2020(5): 7-12. doi: 10.3969/j.issn.1004-2342.2020.05.003 [33] LU B, JIANG Y J, MAN M Q, et al. Expression and regulation of 1-acyl-sn-glycerol- 3-phosphate acyltransferases in the epidermis[J]. J Lipid Res, 2005, 46(11): 2448-2457. doi: 10.1194/jlr.M500258-JLR200
[34] LI X, LIU L, JI J, et al. Tigecycline resistance in Acinetobacter baumannii mediated by frameshift mutation in plsC, encoding 1-acyl-sn-glycerol-3-phosphate acyltransferase[J]. Eur J Clin Microbiol Infect Dis, 2015, 34(3): 625-631. doi: 10.1007/s10096-014-2272-y
[35] HUANG Y H, CHOU S H, LIANG S W, et al. Emergence of an XDR and carbapenemase-producing hypervirulent Klebsiella pneumoniae strain in Taiwan[J]. J Antimicrob Chemother, 2018, 73(8): 2039-2046. doi: 10.1093/jac/dky164
-
期刊类型引用(15)
1. 马治娥,赵文娟,王沛. 不同质子泵抑制剂对胃溃疡患者胃肠激素及氧化应激的影响. 贵州医药. 2024(01): 55-56 . 百度学术
2. 孙敏. 四联疗法联合康复新液对消化性溃疡合并幽门螺杆菌感染患者的临床效果分析. 中国校医. 2024(01): 61-64 . 百度学术
3. 黄莉莉,黄晶晶. 奥美拉唑联合纤维蛋白粘合剂在消化性溃疡出血中的应用效果分析. 中国烧伤创疡杂志. 2024(03): 240-244 . 百度学术
4. 王燕,宋建国,李红,温爽,付琳璐. 雷尼替丁联合消化内镜对十二指肠溃疡的治疗效果. 中国医药指南. 2024(16): 86-89 . 百度学术
5. 刘雅红. 单用质子泵抑制剂治疗消化性溃疡对根除幽门螺杆菌的影响. 中国现代药物应用. 2024(14): 112-114 . 百度学术
6. 白玲,赵琴. 血清谷胱甘肽过氧化物酶、脂质过氧化物水平与妊娠期糖尿病及其糖脂代谢异常、胰岛素抵抗和母婴结局的关系. 安徽医药. 2024(11): 2226-2230 . 百度学术
7. 陈偲. 小组式知信行健康宣教在消化道溃疡患者中的应用. 江苏卫生事业管理. 2024(10): 1420-1422 . 百度学术
8. 王建东. 愈疡健脾方联合质子泵抑制剂治疗脾胃虚寒型消化性溃疡的临床观察. 基层医学论坛. 2024(36): 153-156 . 百度学术
9. 陈波,张庆团,黄克锋,杨燕芬,熊弋平. 瑞巴派特四联疗法对幽门螺杆菌阳性消化性溃疡患者血清氧化应激指标和胃蛋白酶原的影响. 现代生物医学进展. 2023(11): 2168-2172 . 百度学术
10. 黄小花. 健胃愈疡汤辅助四联疗法治疗十二指肠溃疡的效果及对溃疡面积、胃肠相关指标的影响. 临床合理用药. 2023(29): 81-84 . 百度学术
11. 俞洪韵,陈慧丽,朱锋,汪璇,陶治华. 健胃愈疡颗粒联合西咪替丁治疗重症患者应激性溃疡的临床研究. 现代药物与临床. 2023(10): 2506-2510 . 百度学术
12. 胡量. 康复新液治疗胃溃疡的临床疗效及对炎性因子、氧化应激和胃黏膜修复作用的影响分析. 现代诊断与治疗. 2023(17): 2543-2545+2556 . 百度学术
13. 陆文鹏,陈民,陈洁,郑新梅,董小耘. 基于生物信息学探讨败酱散调控氧化应激缓解克罗恩病的机制. 实用临床医药杂志. 2022(16): 11-17 . 本站查看
14. 黄以治. 胃黏膜保护剂联合质子泵抑制剂治疗消化性溃疡伴出血的临床效果. 中国医药指南. 2022(35): 29-32 . 百度学术
15. 张珊珊,刘畅,阴雨龙. 奥美拉唑与雷尼替丁治疗十二指肠溃疡的疗效对比分析. 中外医疗. 2022(31): 136-139 . 百度学术
其他类型引用(3)
计量
- 文章访问数: 401
- HTML全文浏览量: 202
- PDF下载量: 47
- 被引次数: 18