细胞膜包被纳米颗粒在炎性疾病和肿瘤治疗中的研究进展

邱世杰, 佟立权

邱世杰, 佟立权. 细胞膜包被纳米颗粒在炎性疾病和肿瘤治疗中的研究进展[J]. 实用临床医药杂志, 2022, 26(23): 119-124. DOI: 10.7619/jcmp.20221949
引用本文: 邱世杰, 佟立权. 细胞膜包被纳米颗粒在炎性疾病和肿瘤治疗中的研究进展[J]. 实用临床医药杂志, 2022, 26(23): 119-124. DOI: 10.7619/jcmp.20221949
QIU Shijie, TONG Liquan. Research progress in cell membrane-coated nanoparticles in the treatment of inflammatory diseases and tumors[J]. Journal of Clinical Medicine in Practice, 2022, 26(23): 119-124. DOI: 10.7619/jcmp.20221949
Citation: QIU Shijie, TONG Liquan. Research progress in cell membrane-coated nanoparticles in the treatment of inflammatory diseases and tumors[J]. Journal of Clinical Medicine in Practice, 2022, 26(23): 119-124. DOI: 10.7619/jcmp.20221949

细胞膜包被纳米颗粒在炎性疾病和肿瘤治疗中的研究进展

基金项目: 

黑龙江省自然科学基金资助项目 LH2019H006

详细信息
    通讯作者:

    佟立权, E-mail: tlq777666@163.com

  • 中图分类号: R459.9;R314

Research progress in cell membrane-coated nanoparticles in the treatment of inflammatory diseases and tumors

  • 摘要:

    载药纳米颗粒已被用于疾病的诊断与治疗,但纳米颗粒缺乏靶向性,其携带的药物进入人体后大部分不能到达靶器官,且在递送过程中极易被巨噬细胞系统识别并吞噬,难以取得满意疗效。天然细胞膜包被纳米颗粒由于继承了源细胞的特定生物活性,具备低免疫原性、长半衰期、低毒性和先天靶向性等特点,弥补了无膜包被纳米颗粒的缺点。基于细胞膜的递药策略正打破传统观念成为一种极具前景的药物运送方式,本文综述细胞膜包被纳米颗粒的研究进展,包括包被常用源细胞膜、制备与表征过程及其在炎性疾病与肿瘤治疗中的应用现状。

    Abstract:

    Drug-loaded nanoparticles have been used in the process of diagnosis and treatment of diseases, but they lack targeting specificity, most of the drugs they carried cannot reach the target organs after entering the human body and are easily recognized and swallowed by the macrophage system during delivery, making it difficult to acquire satisfactory therapeutic outcomes. Natural cell membrane-coated nanoparticles inherit the specific biological activity of source cells, characterized by low immunogenicity, long half-life, low toxicity, and congenital targeting specificity, which make up for the shortcomings of non-membrane-coated nanoparticles. The drug delivery strategy based on the cell membrane is breaking the traditional concept and becoming a promising way of drug delivery. Cell membrane-coated nanoparticles, including the typically utilized source cell membranes, the process of preparation and characterization, and their application in inflammatory diseases and tumors, were reviewed in this paper.

  • [1]

    FANG R H, KROLL A V, GAO W, et al. Cell membrane coating nanotechnology[J]. Adv Mater, 2018, 30(23): e1706759. doi: 10.1002/adma.201706759

    [2]

    FANG R H, JIANG Y, FANG J C, et al. Cell membrane-derived nanomaterials for biomedical applications[J]. Biomaterials, 2017, 128: 69-83. doi: 10.1016/j.biomaterials.2017.02.041

    [3]

    ZHANG M, DU Y, WANG S, et al. A review of biomimetic nanoparticle drug delivery systems based on cell membranes[J]. Drug Des Devel Ther, 2020, 14: 5495-5503. doi: 10.2147/DDDT.S282368

    [4]

    XIA Q, ZHANG Y, LI Z, et al. Red blood cell membrane-camouflaged nanoparticles: a novel drug delivery system for antitumor application[J]. Acta Pharm Sin B, 2019, 9(4): 675-689. doi: 10.1016/j.apsb.2019.01.011

    [5]

    HAN Y, ZHAO R, XU F. Neutrophil-based delivery systems for nanotherapeutics[J]. Small, 2018, 14(42): e1801674. doi: 10.1002/smll.201801674

    [6]

    REN Y, MIAO C, TANG L, et al. Homotypic cancer cell membranes camouflaged nanoparticles for targeting drug delivery and enhanced chemo-photothermal therapy of glioma[J]. Pharmaceuticals (Basel), 2022, 15(2): 157. doi: 10.3390/ph15020157

    [7]

    KUNDE S S, WAIRKAR S. Platelet membrane camouflaged nanoparticles: Biomimetic architecture for targeted therapy[J]. Int J Pharm, 2021, 598: 120395. doi: 10.1016/j.ijpharm.2021.120395

    [8]

    WU X, LI Y, RAZA F, et al. Red blood cell membrane-camouflaged tedizolid phosphate-loaded PLGA nanoparticles for bacterial-infection therapy[J]. Pharmaceutics, 2021, 13(1): 99. doi: 10.3390/pharmaceutics13010099

    [9]

    LUK B T, ZHANG L. Cell membrane-camouflaged nanoparticles for drug delivery[J]. J Control Release, 2015, 220(pt b): 600-607.

    [10]

    WANG H, LIU Y, HE R, et al. Cell membrane biomimetic nanoparticles for inflammation and cancer targeting in drug delivery[J]. Biomater Sci, 2020, 8(2): 552-568. doi: 10.1039/C9BM01392J

    [11]

    BELHADJ Z, HE B, DENG H L, et al. A combined "eat me/don't eat me" strategy based on extracellular vesicles for anticancer nanomedicine[J]. J Extracell Vesicles, 2020, 9(1): 1806444. doi: 10.1080/20013078.2020.1806444

    [12]

    XU C H, YE P J, ZHOU Y C, et al. Cell membrane-camouflaged nanoparticles as drug carriers for cancer therapy[J]. Acta Biomater, 2020, 105: 1-14. doi: 10.1016/j.actbio.2020.01.036

    [13]

    ZOU S, WANG B, WANG C, et al. Cell membrane-coated nanoparticles: research advances[J]. Nanomedicine: Lond, 2020, 15(6): 625-641. doi: 10.2217/nnm-2019-0388

    [14] 杨咏琪, 李洪亮, 梁景岩. 纳米仿生技术在动脉粥样硬化中的应用研究进展[J]. 实用临床医药杂志, 2022, 26(10): 130-134. https://www.cnki.com.cn/Article/CJFDTOTAL-XYZL202210028.htm
    [15]

    LIU J, REN L, LI S, et al. The biology, function, and applications of exosomes in cancer[J]. Acta Pharm Sin B, 2021, 11(9): 2783-2797. doi: 10.1016/j.apsb.2021.01.001

    [16]

    ZHEN X, CHENG P, PU K. Recent advances in cell membrane-camouflaged nanoparticles for cancer phototherapy[J]. Small, 2019, 15(1): e1804105. doi: 10.1002/smll.201804105

    [17]

    OROOJALIAN F, BEYGI M, BARADARAN B, et al. Immune cell membrane-coated biomimetic nanoparticles for targeted cancer therapy[J]. Small, 2021, 17(12): e2006484. doi: 10.1002/smll.202006484

    [18]

    GAO J, DONG X, SU Y, et al. Human neutrophil membrane-derived nanovesicles as a drug delivery platform for improved therapy of infectious diseases[J]. Acta Biomater, 2021, 123: 354-363. doi: 10.1016/j.actbio.2021.01.020

    [19]

    YE S F, WANG F F, FAN Z X, et al. Light/pH-triggered biomimetic red blood cell membranes camouflaged small molecular drug assemblies for imaging-guided combinational chemo-photothermal therapy[J]. ACS Appl Mater Interfaces, 2019, 11(17): 15262-15275. doi: 10.1021/acsami.9b00897

    [20]

    CHU D, GAO J, WANG Z. Neutrophil-mediated delivery of therapeutic nanoparticles across blood vessel barrier for treatment of inflammation and infection[J]. ACS Nano, 2015, 9(12): 11800-11811. doi: 10.1021/acsnano.5b05583

    [21]

    SPITE M, NORLING L V, SUMMERS L, et al. Resolvin D2 is a potent regulator of leukocytes and controls microbial Sepsis[J]. Nature, 2009, 461(7268): 1287-1291. doi: 10.1038/nature08541

    [22]

    DONG X Y, GAO J, ZHANG C Y, et al. Neutrophil membrane-derived nanovesicles alleviate inflammation to protect mouse brain injury from ischemic stroke[J]. ACS Nano, 2019, 13(2): 1272-1283.

    [23]

    WANG Y, WANG Y, LI S, et al. Functionalized nanoparticles with monocyte membranes and rapamycin achieve synergistic chemoimmunotherapy for reperfusion-induced injury in ischemic stroke[J]. J Nanobiotechnology, 2021, 19(1): 331. doi: 10.1186/s12951-021-01067-0

    [24]

    ZHOU X, CAO X, TU H, et al. Inflammation-targeted delivery of celastrol via neutrophil membrane-coated nanoparticles in the management of acute pancreatitis[J]. Mol Pharm, 2019, 16(3): 1397-1405. doi: 10.1021/acs.molpharmaceut.8b01342

    [25]

    ZHAO Y Z, ZHUGE D L, TONG M Q, et al. Ulcerative colitis-specific delivery of keratinocyte growth factor by neutrophils-simulated liposomes facilitates the morphologic and functional recovery of the damaged colon through alleviating the inflammation[J]. J Control Release, 2019, 299: 90-106. doi: 10.1016/j.jconrel.2019.02.034

    [26] 闻君侠, 王瑾, 江彬锋, 等. M2型巨噬细胞来源的外泌体对类风湿关节炎小鼠的作用及其机制研究[J]. 中国现代医学杂志, 2021, 31(23): 30-37. https://www.cnki.com.cn/Article/CJFDTOTAL-ZXDY202123006.htm
    [27]

    ZHANG Q, DEHAINI D, ZHANG Y, et al. Neutrophil membrane-coated nanoparticles inhibit synovial inflammation and alleviate joint damage in inflammatory arthritis[J]. Nat Nanotechnol, 2018, 13(12): 1182-1190. doi: 10.1038/s41565-018-0254-4

    [28]

    YANG L, ZANG G C, LI J W, et al. Cell-derived biomimetic nanoparticles as a novel drug delivery system for atherosclerosis: predecessors and perspectives[J]. Regen Biomater, 2020, 7(4): 349-358. doi: 10.1093/rb/rbaa019

    [29]

    SONG Y, HUANG Z, LIU X, et al. Platelet membrane-coated nanoparticle-mediated targeting delivery of Rapamycin blocks atherosclerotic plaque development and stabilizes plaque in apolipoprotein E-deficient (ApoE-/-) mice[J]. Nanomedicine, 2019, 15(1): 13-24. doi: 10.1016/j.nano.2018.08.002

    [30]

    HU C M, FANG R H, WANG K C, et al. Nanoparticle biointerfacing by platelet membrane cloaking[J]. Nature, 2015, 526(7571): 118-121. doi: 10.1038/nature15373

    [31]

    PARK J, CHOI Y, CHANG H, et al. Alliance with EPR effect: combined strategies to improve the EPR effect in the tumor microenvironment[J]. Theranostics, 2019, 9(26): 8073-8090. doi: 10.7150/thno.37198

    [32]

    GARRIDO-CASTRO A C, LIN N U, POLYAK K. Insights into molecular classifications of triple-negative breast cancer: improving patient selection for treatment[J]. Cancer Discov, 2019, 9(2): 176-198. doi: 10.1158/2159-8290.CD-18-1177

    [33]

    HUANG J, LAI W, WANG Q, et al. Effective triple-negative breast cancer targeted treatment using iRGD-modified RBC membrane-camouflaged nanoparticles[J]. Int J Nanomedicine, 2021, 16: 7497-7515. doi: 10.2147/IJN.S321071

    [34]

    FU Q, LV P, CHEN Z, et al. Programmed co-delivery of paclitaxel and doxorubicin boosted by camouflaging with erythrocyte membrane[J]. Nanoscale, 2015, 7(9): 4020-4030. doi: 10.1039/C4NR07027E

    [35]

    CHI C L, LI F W, LIU H B, et al. Docetaxel-loaded biomimetic nanoparticles for targeted lung cancer therapy in vivo[J]. J Nanoparticle Res, 2019, 21(7): 1-10.

    [36]

    SURYAPRAKASH S, LAO Y H, CHO H Y, et al. Engineered mesenchymal stem cell/nanomedicine spheroid as an active drug delivery platform for combinational glioblastoma therapy[J]. Nano Lett, 2019, 19(3): 1701-1705. doi: 10.1021/acs.nanolett.8b04697

    [37]

    XUE J, ZHAO Z, ZHANG L, et al. Neutrophil-mediated anticancer drug delivery for suppression of postoperative malignant glioma recurrence[J]. Nat Nanotechnol, 2017, 12(7): 692-700. doi: 10.1038/nnano.2017.54

    [38]

    CAO X, HU Y, LUO S, et al. Neutrophil-mimicking therapeutic nanoparticles for targeted chemotherapy of pancreatic carcinoma[J]. Acta Pharm Sin B, 2019, 9(3): 575-589. doi: 10.1016/j.apsb.2018.12.009

    [39]

    ZHOU X, YU R, CAO X, et al. Bio-mimicking nanoparticles for targeted therapy of malignant melanoma[J]. J Biomed Nanotechnol, 2019, 15(5): 993-1004. doi: 10.1166/jbn.2019.2739

    [40]

    XU P, ZUO H, CHEN B, et al. Doxorubicin-loaded platelets as a smart drug delivery system: an improved therapy for lymphoma[J]. Sci Rep, 2017, 7: 42632. doi: 10.1038/srep42632

    [41]

    CHENG S, XU C, JIN Y, et al. Artificial mini dendritic cells boost T cell-based immunotherapy for ovarian cancer[J]. Adv Sci: Weinh, 2020, 7(7): 1903301. doi: 10.1002/advs.201903301

    [42]

    GUO Y Y, WANG D, SONG Q L, et al. Erythrocyte membrane-enveloped polymeric nanoparticles as nanovaccine for induction of antitumor immunity against melanoma[J]. ACS Nano, 2015, 9(7): 6918-6933.

计量
  • 文章访问数:  248
  • HTML全文浏览量:  198
  • PDF下载量:  25
  • 被引次数: 0
出版历程
  • 收稿日期:  2022-06-22
  • 网络出版日期:  2022-12-22

目录

    /

    返回文章
    返回
    x 关闭 永久关闭