Mechanism of Dengzhan Shengmai capsule in treating coronary heart disease based on network pharmacology and molecular docking technology
-
摘要:目的
基于网络药理学结合分子对接技术探讨灯盏生脉胶囊(DZSM)治疗冠心病(CHD)的潜在作用靶点及机制。
方法采用TCMSP和ETCM数据库检索DZSM的化学成分; 采用Swiss ADME数据库进行活性成分筛选, Swiss Target Prediction数据库获取活性成分的潜在靶点。检索GeneCards和DisGeNET数据库获取CHD靶点, 构建"DZSM-活性成分-CHD靶点"网络。对关键活性成分和核心靶点进行分子对接, 验证结合特性。于DAVID数据库进行基因本体(GO)和京都基因和基因组百科全书(KEGG)富集分析。采用氧化型低密度脂蛋白(ox-LDL)诱导的小鼠巨噬细胞系(RAW264.7细胞)模型体外验证野黄芩苷对CHD的治疗作用。采用Griess反应测定细胞上清液中一氧化氮(NO)生成量。采用实时定量聚合酶链反应(qRT-PCR)检测丝氨酸/苏氨酸激酶(AKT)表达水平; 采用蛋白质免疫印迹试验(Western Blot)检测AKT蛋白表达和磷酸化水平。
结果共获得DZSM的56个活性化合物, 通过作用于136个靶点调控CHD进展。其中山奈酚、槲皮素、木犀草素、芹菜素、野黄芩素、6-羟基山奈酚、野黄芩苷、对壬基酚、麦冬皂苷D和人参皂苷Rb1能够调控共113个CHD靶点。AKT1、SRC、PPARG、EGFR、ESR1、PTGS2、SIRT1、MAPK1、MMP9和PPARA基因为DZSM治疗CHD的核心靶点。分子对接结果显示, 关键活性成分与核心靶点具有良好的结合特性。体外实验结果表明, 野黄芩苷可减少巨噬细胞一氧化氮生成, 增加AKT mRNA、AKT蛋白表达和磷酸化水平(P < 0.05)。KEGG富集分析显示, DZSM主要通过调控癌症通路、内分泌抵抗、糖尿病并发症中的AGE-RAGE信号通路、流体剪切应力与动脉粥样硬化、脂质与动脉粥样硬化、松弛素信号通路等途径治疗CHD。
结论DZSM通过多成分、多靶点、多途径发挥治疗CHD的作用。
Abstract:ObjectiveTo explore the potential target and mechanism of Dengzhan Shengmai capsule (DZSM) in the treatment of coronary heart disease (CHD) based on network pharmacology and molecular docking technology.
MethodsTCMSP and ETCM databases were employed to search the chemical components of DZSM. Swiss ADME database was used to screen active ingredients, and Swiss Target Prediction database was used to obtain potential targets of active ingredients. The CHD target was obtained by searching GeneCards and DisGeNET databases, and the DZSM-active ingredient-CHD target network was constructed. Molecular docking of key active ingredients and core targets was performed to verify binding properties. Gene ontology (GO) and Kyoto Encyclopedia of Genes and Genomes(KEGG) enrichment analysis were performed in the DAVID database. A mouse macrophage cell line (RAW264.7 cells) model induced by oxidized low density lipoprotein (ox-LDL) was used to test the therapeutic effect of scutellarin on CHD in vitro. The production of nitric oxide (NO) in cell supernatant was measured by Griess reaction. Real-time quantitative polymerase chain reaction (qRT-PCR) was used to detect the expression level of serine/threonine kinase (AKT); The expression and phosphorylation of AKT protein were detected by Western Blot.
ResultsA total of 56 active compounds of DZSM were obtained to regulate CHD progression by acting on 136 targets. Among them, kaempferol, quercetin, luteolin, apigenin, scutellarein, 6-hydroxykaempferol, scutellarin, nonylphenol, Ophiopogonin D, and Ginsenoside Rb1 could regulate 113 CHD targets. AKT1, SRC, PPARG, EGFR, ESR1, PTGS2, SIRT1, MAPK1, MMP9 and PPARA genes were the core targets of DZSM therapy for CHD. Molecular docking showed that the key active ingredients and core targets had good binding properties. The results of in vitro experiments showed that scutellarin could reduce the production of nitric oxide and increase the level of AKT, protein expression and phosphorylation in macrophages (P < 0.05). KEGG enrichment analysis showed that DZSM treated CHD mainly by regulating cancer pathways, endocrine resistance, AGE-RAGE signaling pathway in diabetic complications, fluid shear stress and atherosclerosis, lipid and atherosclerosis, and relaxin signaling pathway.
ConclusionDZSM plays a role in the treatment of CHD through multi-component, multi-target and multi-pathway.
-
-
表 1 qRT-PCR引物序列
基因 上游引物(5′→3′) 下游引物(5′→3′) AKT GGACTACTTGCACTCCGAGAAG CATAGTGGCACCGTCCTTGATC GAPDH GTGGGAATGGGTCAGAAGGA CTTCTCCATGTCGTCCCAGT AKT: 丝氨酸/苏氨酸激酶。 表 2 DZSM活性化合物
英文名 中文名 CAS号 植物 2, 6-Dimethoxybenzoic acid 2, 6-二甲氧基苯甲酸 1466-76-8 灯盏细辛 6-Hydroxykaempferol 6-羟基山奈酚 4324-55-4 灯盏细辛 Apigenin 芹菜素 520-36-5 灯盏细辛 Baicalein 黄芩素 491-67-8 灯盏细辛 Caffeic acid 咖啡酸 331-39-5 灯盏细辛 Catechol 邻苯二酚 120-80-9 灯盏细辛 Cedar acid 丁香酸 530-57-4 灯盏细辛 Cinnamic Acid 肉桂酸(反式) 621-82-9 灯盏细辛 Esculetin 秦皮乙素 305-01-1 灯盏细辛 Ferulic acid 阿魏酸 1135-24-6 灯盏细辛 Formononetin 芒柄花黄素 485-72-3 灯盏细辛 Gallic acid 没食子酸 149-91-7 灯盏细辛 Isoliquiritigenin 异甘草素 961-29-5 灯盏细辛 Isoscopoletin 异东莨菪内酯 776-86-3 灯盏细辛 Kaempferol 山奈酚 520-18-3 灯盏细辛、人参 Luteolin 木犀草素 491-70-3 灯盏细辛 Naringenin 柚皮素 480-41-1 灯盏细辛 p-Coumaric acid 对香豆酸 501-98-4 灯盏细辛 p-Hydroxybenzoic acid 对羟基苯甲酸 99-96-7 灯盏细辛 Protocatechuic acid 原儿茶酸 99-50-3 灯盏细辛、五味子 Quercetin 槲皮素 117-39-5 灯盏细辛 Scopoletol 东莨菪内酯 92-61-5 灯盏细辛 Scutellarin 野黄芩苷 27740-01-8 灯盏细辛 Scutellarein 野黄芩素 529-53-3 灯盏细辛 N-p-Coumaroyltyramine N-对反式香豆酰酪胺 36417-86-4 麦冬 Oleanolic Acid 齐墩果酸 508-02-1 麦冬 Ophiopogonin D 麦冬皂苷D 945619-74-9 麦冬 9-Hexadecenoic acid 9-十六烯酸 10030-73-6 人参 Cedrol 雪松醇 77-53-2 人参 Ginsenoside Rb1 人参皂苷Rb1 41753-43-9 人参 Ginsenoside Rb2 人参皂苷Rb2 11021-13-9 人参 Ginsenoside Re 人参皂苷Re 51542-56-4 人参 Ginsenoside Rg1 人参皂苷Rg1 22427-39-0 人参 Ginsenoside Rg3 人参皂苷Rg3 38243-03-7 人参 Ginsenoside Rg5 人参皂苷Rg5 186763-78-0 人参 Ginsenoside Rk1 人参皂苷Rk1 494753-69-4 人参 Malvic acid — 503-05-9 人参 Nepetin 泽兰黄酮 520-11-6 人参 Niacin 烟酸 59-67-6 人参 Palmitic acid 棕榈酸 57-10-3 人参 Pentadecylic acid 十五烷酸 1002-84-2 人参 Sallcylic acid 水杨酸 69-72-7 人参 Succinic Acid 琥珀酸 110-15-6 人参 Vitamin H 吡哆素 22879-79-4 人参 Tridecanoic acid 十三烷酸 638-53-9 人参 Deoxygomisin A 戈米辛N 69176-52-9 五味子 Gomisin L1 R(+)-戈米辛M1 82467-50-3 五味子 Gomisin L2 — 82425-44-3 五味子 Longispinogenin — 465-94-1 五味子 Nonylphenol 对壬基酚 104-40-5 五味子 Nordihydroguaiaretic Acid 马索罗酚 27686-84-6 五味子 Psilostachyin A — 3533-47-9 五味子 Schisandrin 五味子醇甲 7432-28-2 五味子 Schisandrin B 五味子乙素 61281-37-6 五味子 Schisanhenol B 五味子酚乙 102681-52-7 五味子 Schizandrin C 五味子丙素 61301-33-5 五味子 表 3 DZSM治疗CHD的核心靶点
基因名 节点度值 中介中心性 接近中心性 邻域连通性 AKT1 78 0.157 674 9 0.683 673 5 21.54 SRC 56 0.054 896 3 0.598 214 3 25.89 PPARG 55 0.071 025 9 0.595 555 6 23.16 EGFR 54 0.046 872 0 0.590 308 4 25.48 ESR1 52 0.083 235 2 0.585 152 8 23.73 PTGS2 52 0.053 084 9 0.590 308 4 25.54 SIRT1 50 0.043 275 1 0.580 086 6 25.84 MAPK1 44 0.034 526 5 0.558 333 3 26.55 MMP9 43 0.038 211 2 0.565 400 8 28.19 PPARA 40 0.036 245 2 0.556 016 6 24.53 AKT1: AKT丝氨酸/苏氨酸激酶1; SRC: 原癌基因SRC; PPARG: 过氧化物酶体增殖物激活受体γ; EGFR: 表皮生长因子受体; ESR1: 雌激素受体1; PTGS2: 前列腺素内过氧化物合成酶2; SIRT1: 沉默信息调节因子1; MAPK1: 丝裂原活化蛋白激酶1; MMP9: 基质金属蛋白酶9; PPARA: 过氧化物酶体增殖物激活受体α。 -
[1] TOMANIAK M, KATAGIRI Y, MODOLO R, et al. Vulnerable plaques and patients: state-of-the-art[J]. Eur Heart J, 2020, 41(31): 2997-3004. doi: 10.1093/eurheartj/ehaa227
[2] 陈王峰, 金萍. 灯盏生脉胶囊联合常规西药治疗冠心病稳定性心绞痛临床研究[J]. 新中医, 2023, 55(4): 40-45. https://www.cnki.com.cn/Article/CJFDTOTAL-REND202304009.htm [3] ZHAO J, LV C, WU Q L, et al. Computational systems pharmacology reveals an antiplatelet and neuroprotective mechanism of Deng-Zhan-Xi-Xin injection in the treatment of ischemic stroke[J]. Pharmacol Res, 2019, 147: 104365. doi: 10.1016/j.phrs.2019.104365
[4] CHEN M H, CHEN X J, WANG M, et al. Ophiopogon japonicus: a phytochemical, ethnomedicinal and pharmacological review[J]. J Ethnopharmacol, 2016, 181: 193-213. doi: 10.1016/j.jep.2016.01.037
[5] WANG R Y, WANG M, ZHOU J H, et al. Saponins in Chinese herbal medicine exerts protection in myocardial ischemia-reperfusion injury: possible mechanism and target analysis[J]. Front Pharmacol, 2020, 11: 570867.
[6] HOU R, JIN X S, GAO Y H, et al. Evaluation of the effects of Schisandra chinensis on the myocardium of rats with hyperthyroid heart disease by using velocity vector imaging combined with the estimation of p53 expression and calmodulin activity[J]. Evid Based Complement Alternat Med, 2020, 2020: 5263834.
[7] SHEN W T, SONG Z G, ZHONG X, et al. Sangerbox: a comprehensive, interaction-friendly clinical bioinformatics analysis platform[J]. iMeta, 2022, 1(3): e36. doi: 10.1002/imt2.36
[8] 樊华. 灯盏花中野黄芩苷对气滞血瘀型动脉粥样硬化的干预作用及机制研究[D]. 沈阳: 辽宁中医药大学, 2018. [9] 冯健. 齐墩果酸对大鼠血管平滑肌细胞中血红素氧合酶1表达的影响及其作用机制的研究[D]. 重庆: 第三军医大学, 2011. [10] HUANG X Y, WANG Y G, WANG Y, et al. Ophiopogonin D reduces myocardial ischemia-reperfusion injury via upregulating CYP2J3/EETs in rats[J]. Cell Physiol Biochem, 2018, 49(4): 1646-1658. doi: 10.1159/000493500
[11] YANG F, YANG M Y, LE J Q, et al. Protective effects and therapeutics of ginsenosides for improving endothelial dysfunction: from therapeutic potentials, pharmaceutical developments to clinical trials[J]. Am J Chin Med, 2022, 50(3): 749-772. doi: 10.1142/S0192415X22500318
[12] GUAN S B, XIN Y F, DING Y G, et al. Ginsenoside Rg1 protects against cardiac remodeling in heart failure via SIRT1/PINK1/parkin-mediated mitophagy[J]. Chem Biodivers, 2023, 20(2): e202200730. doi: 10.1002/cbdv.202200730
[13] LI Y N, ZHANG W H. Effect of ginsenoside Rb2 on a myocardial cell model of coronary heart disease through Nrf2/HO-1 signaling pathway[J]. Biol Pharm Bull, 2022, 45(1): 71-76. doi: 10.1248/bpb.b21-00525
[14] 王茹. 人参皂苷Re对缺血缺氧损伤心肌线粒体质量控制的优化及机制研究[D]. 北京: 中国中医科学院, 2022. [15] 张艺红, 刘智. 人参皂苷Rg1对冠心病大鼠的影响研究[J]. 中国临床药理学杂志, 2020, 36(2): 133-136. https://www.cnki.com.cn/Article/CJFDTOTAL-GLYZ202002010.htm [16] 郭施勉, 楚英杰. 人参皂苷Rg1对冠心病大鼠心肌细胞凋亡的影响及机制研究[J]. 中西医结合心脑血管病杂志, 2021, 19(23): 4054-4059. doi: 10.12102/j.issn.1672-1349.2021.23.008 [17] LAI Q, YUAN G Y, WANG H, et al. Exploring the protective effects of schizandrol A in acute myocardial ischemia mice by comprehensive metabolomics profiling integrated with molecular mechanism studies[J]. Acta Pharmacol Sin, 2020, 41(8): 1058-1072. doi: 10.1038/s41401-020-0377-7
[18] 杨敏, 姜兴粲, 冯海鹏, 等. 五味子醇甲对去甲肾上腺素诱导心肌肥大损伤的cT-I、cT-T、ET-1调控作用的影响[J]. 中国兽医学报, 2020, 40(8): 1553-1559. https://www.cnki.com.cn/Article/CJFDTOTAL-ZSYX202008020.htm [19] ZHAO X Y, XIANG Y J, CAI C H, et al. Schisandrin B protects against myocardial ischemia/reperfusion injury via the PI3K/Akt pathway in rats[J]. Mol Med Rep, 2018, 17(1): 556-561.
[20] 李卓伦, 杨彦涛, 孙志, 等. 基于UHPLC-Q-Orbitrap和网络药理学的灯盏生脉胶囊治疗心绞痛的机制研究[J]. 中草药, 2021, 52(12): 3501-3513. doi: 10.7501/j.issn.0253-2670.2021.12.005 [21] 孙银芳. HPLC法测定灯盏生脉胶囊中灯盏花乙素含量的研究[J]. 新中医, 2015, 47(11): 206-208. https://www.cnki.com.cn/Article/CJFDTOTAL-REND201511098.htm [22] 李元元. 灯盏生脉药效成分体内外解析分析研究[D]. 北京: 北京协和医学院, 2022. [23] CAO H, JIA Q L, YAN L, et al. Quercetin suppresses the progression of atherosclerosis by regulating MST1-mediated autophagy in ox-LDL-induced RAW264.7 macrophage foam cells[J]. Int J Mol Sci, 2019, 20(23): 6093. doi: 10.3390/ijms20236093
[24] DING J, WU J, WEI H R, et al. Exploring the mechanism of hawthorn leaves against coronary heart disease using network pharmacology and molecular docking[J]. Front Cardiovasc Med, 2022, 9: 804801. doi: 10.3389/fcvm.2022.804801
[25] LI Z, CHENG Q, YU L, et al. Dan-Lou tablets reduces inflammatory response via suppression of the MyD88/p38 MAPK/NF-κB signaling pathway in RAW 264. 7 macrophages induced by ox-LDL[J]. J Ethnopharmacol, 2022, 298: 115600. doi: 10.1016/j.jep.2022.115600
[26] ZHANG Y F, DING J, WANG Y R, et al. Guanxinkang decoction attenuates the inflammation in atherosclerosis by regulating efferocytosis and MAPKs signaling pathway in LDLR-/- mice and RAW264.7 cells[J]. Front Pharmacol, 2021, 12: 731769. doi: 10.3389/fphar.2021.731769
[27] ZHU J Q, YE Q F, XU S X, et al. Shengmai injection alleviates H2O2-induced oxidative stress through activation of AKT and inhibition of ERK pathways in neonatal rat cardiomyocytes[J]. J Ethnopharmacol, 2019, 239: 111677. doi: 10.1016/j.jep.2019.01.001
[28] ZHENG Y R, TIAN C Y, FAN C L, et al. Sheng-Mai Yin exerts anti-inflammatory effects on RAW 264. 7 cells and zebrafish[J]. J Ethnopharmacol, 2021, 267: 113497. doi: 10.1016/j.jep.2020.113497
[29] FLORIDO R, DAYA N R, NDUMELE C E, et al. Cardiovascular disease risk among cancer survivors: the atherosclerosis risk in communities (ARIC) study[J]. J Am Coll Cardiol, 2022, 80(1): 22-32. doi: 10.1016/j.jacc.2022.04.042
[30] DUGANI S B, MOORTHY M V, LI C Y, et al. Association of lipid, inflammatory, and metabolic biomarkers with age at onset for incident coronary heart disease in women[J]. JAMA Cardiol, 2021, 6(4): 437-447. doi: 10.1001/jamacardio.2020.7073
[31] KOSMOPOULOS M, DREKOLIAS D, ZAVRAS P D, et al. Impact of advanced glycation end products (AGEs) signaling in coronary artery disease[J]. Biochim Biophys Acta Mol Basis Dis, 2019, 1865(3): 611-619. doi: 10.1016/j.bbadis.2019.01.006
[32] JACKSON M L, BOND A R, GEORGE S J. Mechanobiology of the endothelium in vascular health and disease: in vitro shear stress models[J]. Cardiovasc Drugs Ther, 2023, 37(5): 997-1010.
[33] MALEKMOHAMMAD K, BEZSONOV E E, RAFIEIAN-KOPAEI M. Role of lipid accumulation and inflammation in atherosclerosis: focus on molecular and cellular mechanisms[J]. Front Cardiovasc Med, 2021, 8: 707529.
[34] GAO X M, SU Y D, MOORE S, et al. Relaxin mitigates microvascular damage and inflammation following cardiac ischemia-reperfusion[J]. Basic Res Cardiol, 2019, 114(4): 30.
[35] LI Z, AGRAWAL V, RAMRATNAM M, et al. Cardiac sodium-dependent glucose cotransporter 1 is a novel mediator of ischaemia/reperfusion injury[J]. Cardiovasc Res, 2019, 115(11): 1646-1658.
[36] XU H, LI H Q, ZHU P X, et al. Tanshinone IIA ameliorates progression of CAD through regulating cardiac H9c2 cells proliferation and apoptosis by miR-133a-3p/EGFR axis[J]. Drug Des Devel Ther, 2020, 14: 2853-2863.
[37] SEMENZA G L. Hypoxia-inducible factors: roles in cardiovascular disease progression, prevention, and treatment[J]. Cardiovasc Res, 2023, 119(2): 371-380.
-
期刊类型引用(10)
1. 赵昕. 行为护理干预对妇科术后留置尿管患者尿管相关并发症及生活质量的影响. 实用妇科内分泌电子杂志. 2024(03): 129-131 . 百度学术
2. 韩灵翠. 头孢哌酮钠/舒巴坦钠治疗妇产科感染效果观察. 辽宁医学杂志. 2023(03): 50-52 . 百度学术
3. 聂建英,杨月婷. 缩短拔尿管时间对妇科腹腔镜手术后患者舒适度及安全性的临床研究. 吉林医学. 2022(08): 2268-2270 . 百度学术
4. 李义娟. 间歇夹管结合盆底功能训练在妇科恶性肿瘤术后留置导尿管患者康复护理中的应用观察. 黑龙江医学. 2021(08): 883-884 . 百度学术
5. 刘锦清,李敏熙,雷宇,陆丹. 综合护理干预措施对妇科恶性肿瘤术后尿路感染的预防效果. 蛇志. 2021(02): 210-211 . 百度学术
6. 冯丽虹. 妇科恶性肿瘤患者术后实施护理干预的研究. 中国继续医学教育. 2021(23): 181-184 . 百度学术
7. 庄运运. 妇科恶性肿瘤患者留置导尿管感染的护理干预. 中国农村卫生. 2021(18): 70+72 . 百度学术
8. 刘孝芳,杨娟,廖巧琼,陈樑. 护理干预在预防妇科恶性肿瘤患者术后留置导尿管感染中的应用效果. 智慧健康. 2020(09): 134-135 . 百度学术
9. 温小梅,李婵. 改良病号裤在留置导尿患者中的应用. 护理实践与研究. 2020(21): 141-143 . 百度学术
10. 柴丽丽,章建芳,张明. 尿路感染标准化管理模式在妇科癌症危重患者中的应用. 中国妇幼健康研究. 2020(12): 1666-1668 . 百度学术
其他类型引用(1)