宏基因组二代测序诊断免疫缺陷患者感染性疾病的研究进展

杨震宇, 於江泉

杨震宇, 於江泉. 宏基因组二代测序诊断免疫缺陷患者感染性疾病的研究进展[J]. 实用临床医药杂志, 2024, 28(9): 129-133. DOI: 10.7619/jcmp.20240557
引用本文: 杨震宇, 於江泉. 宏基因组二代测序诊断免疫缺陷患者感染性疾病的研究进展[J]. 实用临床医药杂志, 2024, 28(9): 129-133. DOI: 10.7619/jcmp.20240557
YANG Zhenyu, YU Jiangquan. Research progress of infectious diseases in immunocompromised hosts using metagenomic next generation sequencing-based diagnostics[J]. Journal of Clinical Medicine in Practice, 2024, 28(9): 129-133. DOI: 10.7619/jcmp.20240557
Citation: YANG Zhenyu, YU Jiangquan. Research progress of infectious diseases in immunocompromised hosts using metagenomic next generation sequencing-based diagnostics[J]. Journal of Clinical Medicine in Practice, 2024, 28(9): 129-133. DOI: 10.7619/jcmp.20240557

宏基因组二代测序诊断免疫缺陷患者感染性疾病的研究进展

基金项目: 

江苏省十四五医学重点学科建设单位基金资助项目 JSDW202217

江苏省扬州市社会发展项目 YZ2023105

详细信息
    通讯作者:

    於江泉, E-mail: 15651057659@163.com

  • 中图分类号: R633;R363;R446

Research progress of infectious diseases in immunocompromised hosts using metagenomic next generation sequencing-based diagnostics

  • 摘要:

    宏基因组二代测序(mNGS)通过识别临床样本中的微生物核酸来协助诊断, 是用于免疫功能低下患者感染性疾病诊断的有效工具。mNGS能够在常规检测为阴性的患者中识别出致病生物体, 但目前在免疫力低下患者中, 评估mNGS诊断感染效能的报告仅限于个体患者或小型回顾性研究。本文回顾分析文献, 为在临床中开展mNGS相关研究提供新思路。

    Abstract:

    Metagenomic next generation sequencing (mNGS) based diagnostics that identify microbial nucleic acids in clinical samples may be a useful tool in addressing some of these challenges. Studies of mNGS in immunocompromised hosts have demonstrated that these diagnostics are capable of identifying causative organisms in a subset of patients for whom conventional testing has been negative. But the reports evaluating the diagnostic efficiency of mNGS in immunocompromised patients are limited to individual patients or small retrospective studies at present. This article reviewed and analyzed the literature to provide new ideas for conducting related research on mNGS in clinical practice.

  • [1]

    ROSSOFF J, CHAUDHURY S, SONEJI M, et al. Noninvasive diagnosis of infection using plasma next-generation sequencing: a single-center experience[J]. Open Forum Infect Dis, 2019, 6(8): ofz327. doi: 10.1093/ofid/ofz327

    [2]

    HOGAN C A, YANG S X, GARNER O B, et al. Clinical impact of metagenomic next-generation sequencing of plasma cell-free DNA for the diagnosis of infectious diseases: a multicenter retrospective cohort study[J]. Clin Infect Dis, 2021, 72(2): 239-245. doi: 10.1093/cid/ciaa035

    [3]

    LEE R A, DHAHERI F A, POLLOCK N R, et al. Assessment of the clinical utility of plasma metagenomic next-generation sequencing in a pediatric hospital population[J]. J Clin Microbiol, 2020, 58(7): e00419-e00420.

    [4]

    NILES D T, WIJETUNGE D S S, PALAZZI D L, et al. Plasma metagenomic next-generation sequencing assay for identifying pathogens: a retrospective review of test utilization in a large children's hospital[J]. J Clin Microbiol, 2020, 58(11): e00794-e00720.

    [5]

    YU J, DIAZ J D, GOLDSTEIN S C, et al. Impact of next-generation sequencing cell-free pathogen DNA test on antimicrobial management in adults with hematological malignancies and transplant recipients with suspected infections[J]. Transplant Cell Ther, 2021, 27(6): 500. e1-500. e6. doi: 10.1016/j.jtct.2021.02.025

    [6]

    KUFNER V, PLATE A, SCHMUTZ S, et al. Two years of viral metagenomics in a tertiary diagnostics unit: evaluation of the first 105 cases[J]. Genes, 2019, 10(9): 661. doi: 10.3390/genes10090661

    [7]

    RODINO K G, TOLEDANO M, NORGAN A P, et al. Retrospective review of clinical utility of shotgun metagenomic sequencing testing of cerebrospinal fluid from a U. S. tertiary care medical center[J]. J Clin Microbiol, 2020, 58(12): e01729-e01720.

    [8] 刘雅婷, 宋飞雪, 李鑫, 等. 宏基因组二代测序在恶性肿瘤患者伴发颅内感染的临床应用及分析[J]. 兰州大学学报: 医学版, 2021, 47(5): 49-54. https://www.cnki.com.cn/Article/CJFDTOTAL-LZYX202105008.htm
    [9] 李文梓, 朱华, 全美洁, 等. 宏基因组二代测序在儿童急性白血病化疗后合并毛霉菌病早期诊断中的应用价值[J]. 中国小儿血液与肿瘤杂志, 2022, 8(6): 363-366. https://www.cnki.com.cn/Article/CJFDTOTAL-ZGXY202206003.htm
    [10]

    RODRIGUEZ C, GRICOURT G, NDEBI M, et al. Fatal encephalitis caused by cristoli virus, an emerging orthobunyavirus, France[J]. Emerg Infect Dis, 2020, 26(6): 1287-1290. doi: 10.3201/eid2606.191431

    [11]

    SOLOMON I H, SPERA K M, RYAN S L, et al. Fatal powassan encephalitis (Deer tick virus, lineage Ⅱ) in a patient with fever and orchitis receiving rituximab[J]. JAMA Neurol, 2018, 75(6): 746-750. doi: 10.1001/jamaneurol.2018.0132

    [12]

    CUI M M, SUN W, XUE Y, et al. Hepatitis E virus and Klebsiella pneumoniae co-infection detected by metagenomics next-generation sequencing in a patient with central nervous system and bloodstream Infection: a case report[J]. BMC Infect Dis, 2024, 24(1): 33. doi: 10.1186/s12879-023-08850-4

    [13]

    HU Z L, WENG X, XU C H, et al. Metagenomic next-generation sequencing as a diagnostic tool for toxoplasmic encephalitis[J]. Ann Clin Microbiol Antimicrob, 2018, 17(1): 45. doi: 10.1186/s12941-018-0298-1

    [14]

    RAMCHANDAR N, PONG A, ANDERSON E. Identification of disseminated toxoplasmosis by plasma next-generation sequencing in a teenager with rapidly progressive multiorgan failure following haploidentical stem cell transplantation[J]. Pediatr Blood Cancer, 2020, 67(4): e28205. doi: 10.1002/pbc.28205

    [15]

    STEINBRINK J M, HONG D K, BERGIN S P, et al. The robust and rapid role of molecular testing in precision fungal diagnostics: a case report[J]. Med Mycol Case Rep, 2020, 27: 77-80. doi: 10.1016/j.mmcr.2020.02.003

    [16]

    TSIKALA-VAFEA M, CAO W B, OLSZEWSKI A J, et al. Fatal mucormycosis and aspergillosis in an atypical host: what do we know about mixed invasive mold infections?[J]. Case Rep Infect Dis, 2020, 2020: 8812528.

    [17]

    WILSON M R, SAMPLE H A, ZORN K C, et al. Clinical metagenomic sequencing for diagnosis of meningitis and encephalitis[J]. N Engl J Med, 2019, 380(24): 2327-2340. doi: 10.1056/NEJMoa1803396

    [18]

    CARBO E C, BUDDINGH E P, KARELIOTI E, et al. Improved diagnosis of viral encephalitis in adult and pediatric hematological patients using viral metagenomics[J]. J Clin Virol, 2020, 130: 104566. doi: 10.1016/j.jcv.2020.104566

    [19]

    STRECK N T, ESPY M J, FERBER M J, et al. Use of next-generation sequencing to detect mutations associated with antiviral drug resistance in cytomegalovirus[J]. J Clin Microbiol, 2023, 61(10): e0042923. doi: 10.1128/jcm.00429-23

    [20]

    TEKIN A, TRUONG H H, ROVATI L, et al. The diagnostic accuracy of metagenomic next-generation sequencing in diagnosing Pneumocystis pneumonia: a systemic review and meta-analysis[J]. Open Forum Infect Dis, 2023, 10(9): ofad442. doi: 10.1093/ofid/ofad442

    [21]

    DAVID J A, KOLIPAKKAM B, MORALES M K, et al. Cell-free plasma next-generation sequencing assists in the evaluation of secondary pneumonia in patients with COVID-19: a case series[J]. Epidemiol Infect, 2023, 151: e185. doi: 10.1017/S0950268823001711

    [22]

    OSBORNE C M, LANGELIER C, KAMM J, et al. Viral detection by reverse transcriptase polymerase chain reaction in upper respiratory tract and metagenomic RNA sequencing in lower respiratory tract in critically ill children with suspected lower respiratory tract infection[J]. Pediatr Crit Care Med, 2024, 25(1): e1-e11. doi: 10.1097/PCC.0000000000003336

    [23]

    LANGELIER C, KALANTAR K L, MOAZED F, et al. Integrating host response and unbiased microbe detection for lower respiratory tract infection diagnosis in critically ill adults[J]. Proc Natl Acad Sci U S A, 2018, 115(52): E12353-E12362.

    [24]

    WU X D, LI Y Y, ZHANG M, et al. Etiology of severe community-acquired pneumonia in adults based on metagenomic next-generation sequencing: a prospective multicenter study[J]. Infect Dis Ther, 2020, 9(4): 1003-1015. doi: 10.1007/s40121-020-00353-y

    [25]

    BURNHAM P, DADHANIA D, HEYANG M, et al. Urinary cell-free DNA is a versatile analyte for monitoring infections of the urinary tract[J]. Nat Commun, 2018, 9(1): 2412. doi: 10.1038/s41467-018-04745-0

    [26]

    CHENG A P, BURNHAM P, LEE J R, et al. A cell-free DNA metagenomic sequencing assay that integrates the host injury response to infection[J]. Proc Natl Acad Sci USA, 2019, 116(37): 18738-18744. doi: 10.1073/pnas.1906320116

    [27]

    XIAO G H, CAI Z, GUO Q L, et al. Insights into the unique lung microbiota profile of pulmonary tuberculosis patients using metagenomic next-generation sequencing[J]. Microbiol Spectr, 2022, 10(1): e0190121. doi: 10.1128/spectrum.01901-21

    [28]

    FOURGEAUD J, REGNAULT B, OK V, et al. Performance of clinical metagenomics in France: a prospective observational study[J]. Lancet Microbe, 2024, 5(1): e52-e61. doi: 10.1016/S2666-5247(23)00244-6

    [29] 曹泽锟, 苏奕晨, 谷俊远, 等. 基于CiteSpace和VOSviewer的抗菌药物治疗腹腔感染研究热点的可视化分析[J]. 实用临床医药杂志, 2023, 27(20): 74-79, 85. doi: 10.7619/jcmp.20231240
    [30]

    SHEN H P, SHEN D Y, SONG H, et al. Clinical assessment of the utility of metagenomic next-generation sequencing in pediatric patients of hematology department[J]. Int J Lab Hematol, 2021, 43(2): 244-249. doi: 10.1111/ijlh.13370

    [31]

    GOGGIN K P, GONZALEZ-PENA V, INABA Y, et al. Evaluation of plasma microbial cell-free DNA sequencing to predict bloodstream infection in pediatric patients with relapsed or refractory cancer[J]. JAMA Oncol, 2020, 6(4): 552-556. doi: 10.1001/jamaoncol.2019.4120

    [32]

    BENAMU E, GAJUREL K, ANDERSON J N, et al. Plasma microbial cell-free DNA next-generation sequencing in the diagnosis and management of febrile neutropenia[J]. Clin Infect Dis, 2022, 74(9): 1659-1668. doi: 10.1093/cid/ciab324

    [33]

    WANG Q, SONG Y G, HAN D M, et al. The first suspected disseminated Hormographiella aspergillata infection in China, diagnosed using metagenomic next-generation sequencing: a case report and literature review[J]. Emerg Microbes Infect, 2023, 12(1): 2220581. doi: 10.1080/22221751.2023.2220581

计量
  • 文章访问数:  141
  • HTML全文浏览量:  29
  • PDF下载量:  11
  • 被引次数: 0
出版历程
  • 收稿日期:  2024-01-30
  • 修回日期:  2024-03-20
  • 网络出版日期:  2024-05-14
  • 刊出日期:  2024-05-14

目录

    /

    返回文章
    返回
    x 关闭 永久关闭