阿瑞匹坦通过内质网应激逆转结直肠癌小鼠化疗耐药的机制研究

陈绍兰, 罗俊, 彭书生, 冉靖, 游先辉

陈绍兰, 罗俊, 彭书生, 冉靖, 游先辉. 阿瑞匹坦通过内质网应激逆转结直肠癌小鼠化疗耐药的机制研究[J]. 实用临床医药杂志, 2025, 29(2): 69-74. DOI: 10.7619/jcmp.20244608
引用本文: 陈绍兰, 罗俊, 彭书生, 冉靖, 游先辉. 阿瑞匹坦通过内质网应激逆转结直肠癌小鼠化疗耐药的机制研究[J]. 实用临床医药杂志, 2025, 29(2): 69-74. DOI: 10.7619/jcmp.20244608
CHEN Shaolan, LUO Jun, PENG Shusheng, RAN Jing, YOU Xianhui. Mechanism of aprepitant in reversing chemoresistance in colorectal cancer mice through endoplasmic reticulum stress[J]. Journal of Clinical Medicine in Practice, 2025, 29(2): 69-74. DOI: 10.7619/jcmp.20244608
Citation: CHEN Shaolan, LUO Jun, PENG Shusheng, RAN Jing, YOU Xianhui. Mechanism of aprepitant in reversing chemoresistance in colorectal cancer mice through endoplasmic reticulum stress[J]. Journal of Clinical Medicine in Practice, 2025, 29(2): 69-74. DOI: 10.7619/jcmp.20244608

阿瑞匹坦通过内质网应激逆转结直肠癌小鼠化疗耐药的机制研究

基金项目: 

2023年成都市医学科研课题立项项目 2023497

详细信息
    通讯作者:

    游先辉

  • 中图分类号: R915;R735.3;R446

Mechanism of aprepitant in reversing chemoresistance in colorectal cancer mice through endoplasmic reticulum stress

  • 摘要:
    目的 

    探讨阿瑞匹坦(Apr)通过内质网应激(ERS)逆转结直肠癌(CRC)小鼠模型5-氟尿嘧啶(5-FU)耐药的分子机制。

    方法 

    选取30只小鼠作为实验动物,随机分配其中5只为对照组(Control组),剩余25只采用背部皮下注射法构建HCT-116/5-FU CRC小鼠模型,并设为CRC组、5-FU组、Apr组、Apr+5-FU组和Apr+ERS抑制剂牛磺熊脱氧胆酸(TUDCA)组,每组5只。记录小鼠体质量变化及肿瘤发生情况,并计算其脏器指数。采用蛋白印迹法(WB)检测各组蛋白激酶R样内质网激酶(PERK)、真核翻译起始因子2亚基α(eIF2α)、激活转录因子4(ATF4)、C/EBP同源蛋白(CHOP)的蛋白表达水平。

    结果 

    用药后5、10、15、20 d时, CRC组、5-FU组、Apr组、Apr+5-FU组、Apr+TUDCA组小鼠体质量的组间比较、时点比较及交互作用比较,差异无统计学意义(P>0.05)。末次给药2 d后,各组小鼠胸腺、肺脏、肝脏、脾脏、心脏、肾脏等脏器指数组间两两比较,差异无统计学意义(P>0.05)。与CRC组比较, Apr组、Apr+5-FU组小鼠PERK、p-eIF2α/eIF2α、ATF4、CHOP蛋白表达水平升高,肿瘤数量减少,肿瘤质量降低,肿瘤体积减小,差异有统计学意义(P < 0.05), 且Apr+5-FU组改善情况优于其他组,差异有统计学意义(P < 0.05)。增加ERS抑制剂TUDCA干预后,抗肿瘤效应及ERS途径激活均受到抑制。

    结论 

    Apr可增强CRC小鼠化疗敏感性并逆转其化疗耐药性,其可能通过介导ERS途径的下游分子发挥这一作用。

    Abstract:
    Objective 

    To investigate the molecular mechanism of aprepitant (Apr) reversing 5-Fluorouracil (5-FU) resistance in colorectal cancer (CRC) mouse model through endoplasmic reticulum stress (ERS).

    Methods 

    Thirty mice were selected as experimental animals. Five mice were randomly assigned to control group, and the remaining 25 mice underwent subcutaneous injection in the back to establish the HCT-116/5-FU CRC mouse model. These mice were then divided into the CRC group, 5-FU group, Apr group, Apr+5-FU group and Apr+ERS inhibitor Tauroursodeoxycholic acid (TUDCA) group, with five mice in each group. Changes in body weight and tumorigenesis in mice were recorded, and their organ indicators were calculated. Western blotting (WB) was used to detect the protein expression levels of protein kinase R-like ER kinase (PERK), eukaryotic initiation factor 2 subunit α (eIF2α), activating transcription factor 4 (ATF4) and C/EBP homologous protein (CHOP) in each group.

    Results 

    At 5, 10, 15 and 20 d after medication, there were no statistically significant differences in body weight among CRC, 5-FU, Apr, Apr+5-FU and Apr+TUDCA groups, neither in time points nor in interactions (P>0.05). Two days after the last administration, there was no significant difference in the indexes of thymus, lung, liver, spleen, heart, kidney and other organs among all groups (P>0.05). Compared with CRC group, the protein expression levels of PERK, P-EIF2α/eIF2α, ATF4 and CHOP in Apr group and Apr+5-FU group were significantly increased, the number of tumors was significantly decreased, the tumor mass was significantly decreased, and the tumor volume was significantly decreased (P < 0.05), and the improvement of Apr+5-FU group was better than that of other groups (P < 0.05).

    Conclusion 

    Apr can enhance chemotherapy sensitivity and reverse chemotherapy resistance in CRC mice, which may be mediated by downstream molecules of ERS pathway.

  • 图  1   各组小鼠不同时点体质量变化

    与CRC组比较, *P < 0.05; 与5-FU组比较, #P < 0.05;
    与Apr组比较, △P < 0.05; 与Apr+5-FU组比较, ▲P < 0.05;
    与Apr+TUDCA组比较, ▽P < 0.05。

    图  2   不同CRC模型小鼠肿瘤发生情况比较

    A: 肿瘤数量; B: 肿瘤质量; C: 肿瘤体积。与CRC组比较, *P < 0.05; 与5-FU组比较, #P < 0.05;
    与Apr组比较, △P < 0.05; 与Apr+TUDCA组比较, ▲P < 0.05。

    图  3   各组小鼠脏器指数比较

    A: 胸腺指数; B: 肺脏指数; C: 肝脏指数; D: 脾脏指数; E: 心脏指数; F: 肾脏指数。

    图  4   各组小鼠ERS途径相关蛋白表达水平比较

    A: PERK蛋白; B: p-eIF2α/eIF2α蛋白; C: ATF4蛋白; D: CHOP蛋白。与Control组比较, *P < 0.05;
    与CRC组比较, #P < 0.05; 与5-FU组比较, △P < 0.05; 与Apr组比较, ▲P < 0.05;
    与Apr+TUDCA组比较, ▽P < 0.05。

    图  5   各组小鼠ERS途径相关蛋白的表达

  • [1]

    HAN B F, ZHENG R S, ZENG H M, et al. Cancer incidence and mortality in China, 2022[J]. J Natl Cancer Cent, 2024, 4(1): 47-53. doi: 10.1016/j.jncc.2024.01.006

    [2]

    MA S C, ZHANG J Q, YAN T H, et al. Novel strategies to reverse chemoresistance in colorectal cancer[J]. Cancer Med, 2023, 12(10): 11073-11096. doi: 10.1002/cam4.5594

    [3] 陈易华, 罗艳, 田强, 等. 结直肠癌组织中核受体视黄酸X受体a及核受体相互作用蛋白1的表达与预后的关系[J]. 实用临床医药杂志, 2024, 28(7): 36-40.
    [4]

    KONG Y, JIANG J, HUANG Y Q, et al. Endoplasmic reticulum stress in melanoma pathogenesis and resistance[J]. Biomedecine Pharmacother, 2022, 155: 113741. doi: 10.1016/j.biopha.2022.113741

    [5]

    ZHU C D, XIE Y F, LI Q, et al. CPSF6-mediated XBP1 3'UTR shortening attenuates cisplatin-induced ER stress and elevates chemo-resistance in lung adenocarcinoma[J]. Drug Resist Updat, 2023, 68: 100933. doi: 10.1016/j.drup.2023.100933

    [6]

    CAO X Y, YANG Y, ZHOU W, et al. Aprepitant inhibits the development and metastasis of gallbladder cancer via ROS and MAPK activation[J]. BMC Cancer, 2023, 23(1): 471. doi: 10.1186/s12885-023-10954-8

    [7]

    GUERRERO-HERNÁNDEZ A, SÁNCHEZ-VÁZQUEZ V H, MARTÍNEZ-MARTÍNEZ E, et al. Sarco-endoplasmic reticulum calcium release model based on changes in the luminal calcium content[J]. Adv Exp Med Biol, 2020, 1131: 337-370. http://www.zhangqiaokeyan.com/journal-foreign-detail/0704028108019.html

    [8]

    HETZ C, AXTEN J M, PATTERSON J B. Pharmacological targeting of the unfolded protein response for disease intervention[J]. Nat Chem Biol, 2019, 15(8): 764-775. doi: 10.1038/s41589-019-0326-2

    [9] 黄越, 田芳, 胡守友, 等. 患者来源结直肠癌异种移植模型的构建及初步应用[J]. 临床肿瘤学杂志, 2018, 23(4): 316-320.
    [10]

    TANG D X, YANG Z, LONG F X, et al. Inhibition of MALAT1 reduces tumor growth and metastasis and promotes drug sensitivity in colorectal cancer[J]. Cell Signal, 2019, 57: 21-28. doi: 10.1016/j.cellsig.2019.01.013

    [11]

    ISIDRO R A, CRUZ M L, ISIDRO A A, et al. Immunohistochemical expression of SP-NK-1R-EGFR pathway and VDR in colonic inflammation and neoplasia[J]. World J Gastroenterol, 2015, 21(6): 1749-1758. doi: 10.3748/wjg.v21.i6.1749

    [12]

    MARTÍN-GARCÍA D, TÉLLEZ T, REDONDO M, et al. The use of SP/Neurokinin-1 as a Therapeutic Target in Colon and Rectal Cancer[J]. Curr Med Chem, 2024, 31(39): 6487-6509. doi: 10.2174/0109298673261625230924114406

    [13]

    ROSSO M, ROBLES-FRÍAS M J, COVEÑAS R, et al. The NK-1 receptor is expressed in human primary gastric and colon adenocarcinomas and is involved in the antitumor action of L-733, 060 and the mitogenic action of substance P on human gastrointestinal cancer cell lines[J]. Tumour Biol, 2008, 29(4): 245-254. doi: 10.1159/000152942

    [14]

    NAVARI R M, SCHWARTZBERG L S. Evolving role of neurokinin 1-receptor antagonists for chemotherapy-induced nausea and vomiting[J]. Onco Targets Ther, 2018, 11: 6459-6478. doi: 10.2147/OTT.S158570

    [15]

    HONG X Y, MA J J, ZHENG S S, et al. Advances in the research and application of neurokinin-1 receptor antagonists[J]. J Zhejiang Univ Sci B, 2024, 25(2): 91-105. doi: 10.1631/jzus.B2300455

    [16]

    JAVID H, AFSHARI A R, ZAHEDI AVVAL F, et al. Aprepitant promotes caspase-dependent apoptotic cell death and G2/M arrest through PI3K/akt/NF-κB axis in cancer stem-like esophageal squamous cell carcinoma spheres[J]. Biomed Res Int, 2021, 2021: 8808214. doi: 10.1155/2021/8808214

    [17]

    MOMEN RAZMGAH M, GHAHREMANLOO A, JAVID H, et al. The effect of substance P and its specific antagonist (aprepitant) on the expression of MMP-2, MMP-9, VEGF, and VEGFR in ovarian cancer cells[J]. Mol Biol Rep, 2022, 49(10): 9307-9314. doi: 10.1007/s11033-022-07771-w

    [18]

    WANG G Q, FAN F J, SUN C Y, et al. Looking into endoplasmic reticulum stress: the key to drug-resistance of multiple myeloma[J]. Cancers, 2022, 14(21): 5340. doi: 10.3390/cancers14215340

    [19]

    QING B W, WANG S, DU Y G, et al. Crosstalk between endoplasmic reticulum stress and multidrug-resistant cancers: hope or frustration[J]. Front Pharmacol, 2023, 14: 1273987. doi: 10.3389/fphar.2023.1273987

    [20]

    CUBILLOS-RUIZ J R, BETTIGOLE S E, GLIMCHER L H. Tumorigenic and immunosuppressive effects of endoplasmic reticulum stress in cancer[J]. Cell, 2017, 168(4): 692-706. doi: 10.1016/j.cell.2016.12.004

    [21]

    CHEN L, SUN K Y, QIN W J, et al. LIMK1 m6A-RNA methylation recognized by YTHDC2 induces 5-FU chemoresistance in colorectal cancer via endoplasmic reticulum stress and stress granule formation[J]. Cancer Lett, 2023, 576: 216420. doi: 10.1016/j.canlet.2023.216420

    [22]

    GARCIA-RECIO S, FUSTER G, FERNANDEZ-NOGUEIRA P, et al. Substance P autocrine signaling contributes to persistent HER2 activation that drives malignant progression and drug resistance in breast cancer[J]. Cancer Res, 2013, 73(21): 6424-6434. doi: 10.1158/0008-5472.CAN-12-4573

图(5)
计量
  • 文章访问数:  50
  • HTML全文浏览量:  17
  • PDF下载量:  8
  • 被引次数: 0
出版历程
  • 收稿日期:  2024-09-29
  • 修回日期:  2024-11-02
  • 刊出日期:  2025-01-27

目录

    /

    返回文章
    返回
    x 关闭 永久关闭