N-乙酰半胱氨酸对甲基硝基亚硝基胍诱导的胃癌癌前病变的影响及作用机制研究

丁晓蕊, 路敏敏, 董浩

丁晓蕊, 路敏敏, 董浩. N-乙酰半胱氨酸对甲基硝基亚硝基胍诱导的胃癌癌前病变的影响及作用机制研究[J]. 实用临床医药杂志, 2025, 29(2): 6-13. DOI: 10.7619/jcmp.20245014
引用本文: 丁晓蕊, 路敏敏, 董浩. N-乙酰半胱氨酸对甲基硝基亚硝基胍诱导的胃癌癌前病变的影响及作用机制研究[J]. 实用临床医药杂志, 2025, 29(2): 6-13. DOI: 10.7619/jcmp.20245014
DING Xiaorui, LU Minmin, DONG Hao. Effect and mechanism of N-acetylcysteine on methylnitrosourea-induced precancerous lesions of gastric cancer[J]. Journal of Clinical Medicine in Practice, 2025, 29(2): 6-13. DOI: 10.7619/jcmp.20245014
Citation: DING Xiaorui, LU Minmin, DONG Hao. Effect and mechanism of N-acetylcysteine on methylnitrosourea-induced precancerous lesions of gastric cancer[J]. Journal of Clinical Medicine in Practice, 2025, 29(2): 6-13. DOI: 10.7619/jcmp.20245014

N-乙酰半胱氨酸对甲基硝基亚硝基胍诱导的胃癌癌前病变的影响及作用机制研究

基金项目: 

山东省医药卫生科技发展计划项目 2019WS001

山东省医药卫生科技发展计划项目 202203030577

山东省滨州市人民医院院级课题 YBKTZR202108

详细信息
    通讯作者:

    董浩

  • 中图分类号: R735.2;R446;R361

Effect and mechanism of N-acetylcysteine on methylnitrosourea-induced precancerous lesions of gastric cancer

  • 摘要:
    目的 

    探讨N-乙酰半胱氨酸(NAC)对甲基硝基亚硝基胍(MNNG)诱导的胃癌癌前病变(PLGC)的影响并分析其作用机制。

    方法 

    体外培养胃上皮细胞系GES-1, 并使用不同浓度的MNNG进行处理。使用MNNG诱导建立大鼠PLGC模型。通过显微镜观察细胞形态学变化,并采用划痕实验和Transwell实验分别评估细胞迁移和侵袭能力。采用免疫印迹法(Western blot)分析上皮间质转化[上皮型钙黏蛋白(E-cadherin)、神经型钙黏蛋白(N-cadherin)蛋白表达]及活性氧(ROS)/磷脂酰肌醇3-激酶(PI3K)/丝裂原活化蛋白激酶(AKT)/核因子-κB(NF-κB)通路相关蛋白[磷酸化(p-)PI3K、p-AKT及核内p65蛋白]表达。采用DCFH-DA染色检测ROS水平。采用苏木精-伊红(HE)染色观察胃组织病理变化。

    结果 

    体外实验结果表明, NAC处理可减轻MNNG诱导的GES-1细胞形态及生长特性改变,抑制细胞迁移、侵袭。体内实验结果表明, NAC处理可减少MNNG诱导的体内病变、增生。NAC可抑制体内外MNNG诱导的上皮间质转化进程(E-cadherin表达增加, N-cadherin表达下降)并抑制ROS/PI3K/AKT/NF-κB通路(p-PI3K、p-AKT及核内p65蛋白表达下降)。激活ROS/PI3K/AKT/NF-κB通路可部分逆转NAC对MNNG诱导的GES-1细胞迁移、侵袭、上皮间质转化以及对ROS/PI3K/AKT/NF-κB通路相关蛋白的作用。

    结论 

    NAC对MNNG诱导的胃癌癌前病变的保护作用可能与ROS/PI3K/AKT/NF-κB通路的失活相关。

    Abstract:
    Objective 

    To investigate the effects of N-acetylcysteine (NAC) on methylnitrosourea (MNNG)-induced precancerous lesions of gastric cancer (PLGC) and analyze its underlying mechanisms.

    Methods 

    Gastric epithelial cell line GES-1 was cultured in vitro and treated with different concentrations of MNNG. The rat PLGC model was established by MNNG induction. The morphological changes of the cells were observed by microscope, and the migration and invasion ability of the cells were evaluated by wound healing and transwell tests, respectively. Western blot analysis was conducted to evaluate epithelial-mesenchymal transition (E-cadherin and N-cadherin proteins expression) and related proteins expression of reactive oxygen species (ROS)/phosphatidylinositol 3-kinase (PI3K)/protein kinase B (AKT)/nuclear factor-κB (NF-κB) pathway [phosphorylated PI3K (p-PI3K), p-AKT and nuclear p65 protein]. ROS levels were detected using DCFH-DA staining. Histopathological changes in gastric tissues were observed using hematoxylin and eosin (HE) staining.

    Results 

    In vitro experiments demonstrated that NAC treatment alleviated MNNG-induced alterations in the morphology and growth characteristics of GES-1 cells, inhibiting cell migration and invasion. In vitro experiments showed that NAC treatment reduced MNNG-induced lesions and hyperplasia. NAC inhibited the EMT process (increased E-cadherin expression and decreased N-cadherin expression) and suppressed the ROS/PI3K/AKT/NF-κB pathway (decreased expression of p-PI3K, p-AKT and nuclear p65 protein) both in vitro and in vivo. Activation of the ROS/PI3K/AKT/NF-κB pathway partially reversed the effects of NAC on MNNG-induced cell migration, invasion, epithelial-mesenchymal transition and related proteins in the ROS/PI3K/AKT/NF-κB pathway in GES-1 cells.

    Conclusion 

    The protective effect of NAC on MNNG-induced PLGC may be associated with the inactivation of the ROS/PI3K/AKT/NF-κB pathway.

  • 图  1   MNNG诱导建立胃上皮细胞GES-1癌前转变模型

    A: GES-1细胞形态学变化; B: 各组细胞迁移能力比较; C: 各组细胞侵袭能力比较;
    D: 细胞中E-cadherin、N-cadherin蛋白表达比较。与MNNG 0 h比较, ***P < 0.001。

    图  2   MNNG诱导ROS/PI3K/AKT/NF-κB通路在胃上皮细胞中的表达

    A: DCFH-DA探针检测ROS水平; B: 细胞中p-PI3K/PI3K、p-AKT/AKT、核内p65蛋白表达比较。

    图  3   NAC通过抑制ROS/PI3K/AKT/NF-κB信号减轻MNNG诱导的GES-1细胞癌前转变

    A: CCK-8检测细胞活力, 与NAC 0 mmol/L比较, ***P < 0.001; B: DCFH-DA探针检测ROS水平;
    C: 细胞中p-PI3K/PI3K、p-AKT/AKT、核内p65蛋白表达比较; D: GES-1细胞形态学变化; E: 各组细胞迁移能力比较;
    F: 各组细胞侵袭能力比较; G: 细胞中E-cadherin、N-cadherin蛋白表达比较。与对照组相比, ***P < 0.001;
    与MNNG组相比, ###P < 0.001; 与MNNG + NAC组比较, △△△P < 0.001。

    图  4   NAC抑制MNNG诱导的体内癌前病变进展

    A: 不同周龄大鼠体质量; B: HE染色检测胃组织病理变化; C: 组织中E-cadherin、N-cadherin蛋白表达比较。
    与对照组比较, ***P < 0.001; 与MNNG组比较, ###P < 0.001。

    图  5   NAC抑制MNNG诱导的PI3K/AKT/NF-κB通路在体内胃组织中表达

    表  1   MNNG诱导后细胞中E-cadherin、N-cadherin蛋白表达比较(x±s)(n=3)

    时点 E-cadherin表达 N-cadherin表达
    MNNG 0 h 1.00±0.04 1.00±0.06
    MNNG 6 h 0.80±0.06*** 1.92±0.37***
    MNNG 12 h 0.56±0.10*** 2.49±0.26***
    MNNG 24 h 0.36±0.05*** 3.51±0.37***
    与MNNG 0 h比较, * * * P < 0.001。
    下载: 导出CSV

    表  2   MNNG诱导后细胞中p-PI3K/PI3K、p-AKT/AKT、核内p65蛋白表达比较(x±s)(n=3)

    时点 ROS水平 p-PI3K表达 PI3K表达 p-AKT表达 AKT表达 p65 (核)
    MNNG 0 h 1.00±0.12 1.00±0.03 1.00±0.02 1.00±0.06 1.00±0.03 1.00±0.03
    MNNG 6 h 2.43±0.31 1.81±0.35 0.96±0.03 2.29±0.93 1.00±0.02 1.75±0.11***
    MNNG 12 h 10.31±1.55*** 2.80±0.09** 0.93±0.02 2.99±1.11** 0.98±0.04 2.60±0.04***
    MNNG 24 h 27.32±5.37*** 3.23±1.10*** 0.95±0.02 3.64±1.16*** 0.99±0.03 3.23±0.17***
    与MNNG 0 h比较, * * P < 0.01, * * * P < 0.001。
    下载: 导出CSV

    表  3   NAC降低MNNG诱导的GES-1细胞ROS水平(x±s) (n=3)

    组别 ROS水平
    对照组 1.00±0.13
    MNNG组 35.81±2.51***
    MNNG+NAC 2.5 mmol/L组 13.79±1.66###
    MNNG+NAC 5.0 mmol/L组 3.43±0.38###
    MNNG+NAC 10.0 mmol/L组 2.27±0.20###
    与对照组相比, * * * P < 0.001; 与MNNG组相比, ###P < 0.001。
    下载: 导出CSV

    表  4   740Y-P可逆转NAC对MNNG诱导的GES-1细胞上皮间质转化x±s) (n=3)

    组别 p-PI3K表达 PI3K表达 p-AKT表达 AKT表达 p65 (核) E-cadherin表达 N-cadherin表达
    对照组 1.00±0.04 1.00±0.03 1.00±0.03 1.00±0.02 1.00±0.05 1.00±0.04 1.00±0.07
    MNNG组 3.15±0.49*** 0.96±0.03 4.09±0.78*** 0.98±0.03 3.50±0.09*** 0.32±0.05*** 4.03±0.28***
    MNNG+NAC组 1.77±0.17### 0.98±0.02 2.18±0.43### 0.97±0.06 2.12±0.10### 0.68±0.04### 2.14±0.22###
    MNNG+NAC+740Y-P组 2.47±0.37△△ 0.93±0.02 3.02±0.53 0.99±0.07 2.99±0.13△△△ 0.48±0.03△△△ 3.31±0.35△△△
    与对照组比较, * * * P < 0.001; 与MNNG组比较, ###P < 0.001; 与MNNG+NAC组比较, △P < 0.05, △△P < 0.01, △△△P < 0.001。
    下载: 导出CSV

    表  5   NAC抑制MNNG诱导体内上皮间质转化(x±s) (n=6)

    组别 E-cadherin表达 N-cadherin表达
    对照组 1.00±0.04 1.00±0.02
    MNNG组 0.38±0.07*** 2.52±0.23***
    MNNG + NAC组 0.78±0.09### 1.61±0.09###
    与对照组比较, * * * P < 0.001; 与MNNG组比较, ###P < 0.001。
    下载: 导出CSV

    表  6   NAC抑制MNNG诱导的PI3K/AKT/NF-κB通路表达(x±s) (n=6)

    组别 p-PI3K表达 PI3K表达 p-AKT表达 AKT表达 p65表达(核)
    对照组 1.00±0.04 1.00±0.02 1.00±0.05 1.00±0.03 1.00±0.06
    MNNG组 2.16±0.13*** 0.99±0.03 2.51±0.51*** 0.99±0.04 2.16±0.35***
    MNNG+NAC组 1.72±0.08### 0.99±0.04 1.88±0.55## 1.00±0.05 1.63±0.17#
    与对照组比较, * * * P < 0.001; 与MNNG组比较, #P < 0.05, ##P < 0.01, ###P < 0.001。
    下载: 导出CSV
  • [1]

    GOETZE O T, AL-BATRAN S E, CHEVALLAY M, et al. Multimodal treatment in locally advanced gastric cancer[J]. Updates Surg, 2018, 70(2): 173-179. doi: 10.1007/s13304-018-0539-z

    [2] 白光, 唐旭东, 周红丽, 等. 慢性萎缩性胃炎以脾虚血瘀论治探析[J]. 中华中医药学刊, 2021, 39(9): 28-31.
    [3]

    ELBINI DHOUIB I, JALLOULI M, ANNABI A, et al. A minireview on N-acetylcysteine: an old drug with new approaches[J]. Life Sci, 2016, 151: 359-363. doi: 10.1016/j.lfs.2016.03.003

    [4]

    CHENG G, HARDY M, KALYANARAMAN B, et al. Antiproliferative effects of mitochondria-targeted N-acetylcysteine and analogs in cancer cells[J]. Sci Rep, 2023, 13(1): 7254. doi: 10.1038/s41598-023-34266-w

    [5]

    XIE C, YI J, LU J, et al. N-acetylcysteine reduces ROS-mediated oxidative DNA damage and PI3K/Akt pathway activation induced by Helicobacter pylori infection[J]. Oxid Med Cell Longev, 2018, 2018: 1874985. doi: 10.1155/2018/1874985

    [6]

    ZHITKOVICH A. N-acetylcysteine: antioxidant, aldehyde scavenger, and more[J]. Chem Res Toxicol, 2019, 32(7): 1318-1319. doi: 10.1021/acs.chemrestox.9b00152

    [7]

    WANG K S, LV Y, WANG Z, et al. Imperatorin efficiently blocks TNF-α-mediated activation of ROS/PI3K/Akt/NF-κB pathway[J]. Oncol Rep, 2017, 37(6): 3397-3404. doi: 10.3892/or.2017.5581

    [8]

    GONG C W, AI J Y, FAN Y, et al. NCAPG promotes the proliferation of hepatocellular carcinoma through PI3K/AKT signaling[J]. Onco Targets Ther, 2019, 12: 8537-8552. doi: 10.2147/OTT.S217916

    [9]

    ATALAY F, ODABASOGLU F, HALICI M, et al. N-acetyl cysteine has both gastro-protective and anti-inflammatory effects in experimental rat models: its gastro-protective effect is related to its in vivo and in vitro antioxidant properties[J]. J Cell Biochem, 2016, 117(2): 308-319. doi: 10.1002/jcb.25193

    [10]

    WEN J X, TONG Y L, MA X, et al. Therapeutic effects and potential mechanism of dehydroevodiamine on N-methyl-N'-nitro-N-nitrosoguanidine-induced chronic atrophic gastritis[J]. Phytomedicine, 2021, 91: 153619. doi: 10.1016/j.phymed.2021.153619

    [11] 陆钰婷, 刘华一, 尚家驹, 等. N-甲基-N'-硝基-N-亚硝基胍复合法建立胃癌前病变大鼠模型的研究进展[J]. 中国中药杂志, 2021, 46(16): 4089-4095.
    [12] 王霞, 叶景鸿, 许尤琪. 人工合成的亚硝基化合物MNNG致人胃黏膜上皮细胞恶性转化模型的建立及机制分析[J]. 山东医药, 2021, 61(2): 46-49.
    [13]

    LI Y, LI T, CHEN J N, et al. Manpixiao decoction halted the malignant transformation of precancerous lesions of gastric cancer: from network prediction to In-vivo verification[J]. Front Pharmacol, 2022, 13: 927731. doi: 10.3389/fphar.2022.927731

    [14] 贾茹涵, 石大林, 李文慧, 等. 新早期胃癌标志物PRDX4通过清除ROS促进胃癌的发生发展(英文)[J]. 生物工程学报, 2020, 36(2): 320-331.
    [15]

    SARMIENTO-SALINAS F L, PEREZ-GONZALEZ A, ACOSTA-CASIQUE A, et al. Reactive oxygen species: Role in carcinogenesis, cancer cell signaling and tumor progression[J]. Life Sci, 2021, 284: 119942. doi: 10.1016/j.lfs.2021.119942

    [16]

    WANG Y, CHU F H, LIN J, et al. Erianin, the main active ingredient of Dendrobium chrysotoxum Lindl, inhibits precancerous lesions of gastric cancer (PLGC) through suppression of the HRAS-PI3K-AKT signaling pathway as revealed by network pharmacology and in vitro experimental verification[J]. J Ethnopharmacol, 2021, 279: 114399. doi: 10.1016/j.jep.2021.114399

    [17]

    ZHU F Y, XU Y L, PAN J L, et al. Epigallocatechin gallate protects against MNNG-induced precancerous lesions of gastric carcinoma in rats via PI3K/Akt/mTOR pathway[J]. Evid Based Complement Alternat Med, 2021, 2021: 8846813. http://www.socolar.com/Article/Index?aid=100086617939&jid=100000008482

    [18]

    WANG X Y, ZHANG R H, ZENG N L, et al. Panax notoginseng saponins dually modulates autophagy in gastric precancerous lesions complicated with myocardial ischemia-reperfusion injury model through the PI3K/AKT/mTOR pathway[J]. Biomed Pharmacother, 2024, 178: 117268. doi: 10.1016/j.biopha.2024.117268

    [19]

    LIU W, PAN H F, YANG L J, et al. Panax ginseng C. A. Meyer (Rg3) ameliorates gastric precancerous lesions in Atp4a-/- mice via inhibition of glycolysis through PI3K/AKT/miRNA-21 pathway[J]. Evid Based Complement Alternat Med, 2020, 2020: 2672648. doi: 10.1155/2020/2672648

    [20]

    ZHANG J X, BAO S C, CHEN J, et al. Xiaojianzhong decoction prevents gastric precancerous lesions in rats by inhibiting autophagy and glycolysis in gastric mucosal cells[J]. World J Gastrointest Oncol, 2023, 15(3): 464-489. doi: 10.4251/wjgo.v15.i3.464

    [21]

    CHEN L Y, LIU P, FENG X, et al. Salidroside suppressing LPS-induced myocardial injury by inhibiting ROS-mediated PI3K/Akt/mTOR pathway in vitro and in vivo[J]. J Cell Mol Med, 2017, 21(12): 3178-3189. doi: 10.1111/jcmm.12871

    [22]

    XU J Y, SHEN W, PEI B, et al. Xiao Tan He Wei Decoction reverses MNNG-induced precancerous lesions of gastric carcinoma in vivo and vitro: Regulation of apoptosis through NF-κB pathway[J]. Biomed Pharmacother, 2018, 108: 95-102. doi: 10.1016/j.biopha.2018.09.012

    [23]

    JIANG J Y, LIU D J, LIU M X. The protective effect of NF-κB signaling pathway inhibitor PDTC on mice with chronic atrophic gastritis[J]. Scand J Gastroenterol, 2021, 56(10): 1131-1139. doi: 10.1080/00365521.2021.1953130

    [24]

    RAGHU G, BERK M, CAMPOCHIARO P A, et al. The multifaceted therapeutic role of N-acetylcysteine (NAC) in disorders characterized by oxidative stress[J]. Curr Neuropharmacol, 2021, 19(8): 1202-1224. doi: 10.2174/1570159X19666201230144109

    [25]

    WANG N, HAO Y Q, FU L J. Trimethylamine-N-oxide promotes osteoclast differentiation and bone loss via activating ROS-dependent NF-κB signaling pathway[J]. Nutrients, 2022, 14(19): 3955. doi: 10.3390/nu14193955

    [26]

    PEI X D, XIAO J S, WEI G J, et al. Oenothein B inhibits human non-small cell lung cancer A549 cell proliferation by ROS-mediated PI3K/Akt/NF-κB signaling pathway[J]. Chem Biol Interact, 2019, 298: 112-120. doi: 10.1016/j.cbi.2018.09.021

  • 期刊类型引用(9)

    1. 马雪萍,王晓丽,阿里木江·司马义,徐桂萍. 腹股沟上髂筋膜阻滞复合全身麻醉对高龄髋关节置换患者术后谵妄发生的影响. 新疆医学. 2022(02): 131-134 . 百度学术
    2. 张宏,李淑萍. 老年患者髋关节置换术后谵妄的发生现状及其相关影响因素分析. 长春中医药大学学报. 2022(10): 1155-1159 . 百度学术
    3. 刘贵政,郑婷婷,杜斌. 老年髋部骨折患者术后谵妄发生现况及危险因素研究. 贵州医药. 2022(09): 1405-1406 . 百度学术
    4. 王秀环,鲍乐乐,马漪洁,陈宁宁. 不同麻醉方法对老年髋关节置换患者术后谵妄发生的影响. 广州医科大学学报. 2021(02): 40-44 . 百度学术
    5. 刘丹,杨万翔. 人文关怀护理对人工髋关节置换术后谵妄患者临床症状的影响. 中国当代医药. 2021(25): 270-272+276 . 百度学术
    6. 陈立红,徐芙蓉,叶洁玉,许华亮. 高龄骨科髋关节置换术后患者发生谵妄的危险因素分析. 现代医学与健康研究电子杂志. 2021(23): 115-118 . 百度学术
    7. 毛俊岚. 高龄患者髋关节置换术后谵妄1例的护理. 基层医学论坛. 2020(03): 420-421 . 百度学术
    8. 欧玉琼,吴建颖,周嫦娥. 以临床路径为指导的谵妄管理对老年股骨头置换术后患者的影响. 护理实践与研究. 2020(02): 86-88 . 百度学术
    9. 姜红卫. 骨科老年患者髋关节术后谵妄发生原因及疼痛干预护理进展. 系统医学. 2020(13): 196-198 . 百度学术

    其他类型引用(1)

图(5)  /  表(6)
计量
  • 文章访问数:  85
  • HTML全文浏览量:  10
  • PDF下载量:  9
  • 被引次数: 10
出版历程
  • 收稿日期:  2024-10-21
  • 修回日期:  2024-12-24
  • 刊出日期:  2025-01-27

目录

    /

    返回文章
    返回
    x 关闭 永久关闭