Research progress in cell membrane-coated nanoparticles in the treatment of inflammatory diseases and tumors
-
摘要:
载药纳米颗粒已被用于疾病的诊断与治疗,但纳米颗粒缺乏靶向性,其携带的药物进入人体后大部分不能到达靶器官,且在递送过程中极易被巨噬细胞系统识别并吞噬,难以取得满意疗效。天然细胞膜包被纳米颗粒由于继承了源细胞的特定生物活性,具备低免疫原性、长半衰期、低毒性和先天靶向性等特点,弥补了无膜包被纳米颗粒的缺点。基于细胞膜的递药策略正打破传统观念成为一种极具前景的药物运送方式,本文综述细胞膜包被纳米颗粒的研究进展,包括包被常用源细胞膜、制备与表征过程及其在炎性疾病与肿瘤治疗中的应用现状。
Abstract:Drug-loaded nanoparticles have been used in the process of diagnosis and treatment of diseases, but they lack targeting specificity, most of the drugs they carried cannot reach the target organs after entering the human body and are easily recognized and swallowed by the macrophage system during delivery, making it difficult to acquire satisfactory therapeutic outcomes. Natural cell membrane-coated nanoparticles inherit the specific biological activity of source cells, characterized by low immunogenicity, long half-life, low toxicity, and congenital targeting specificity, which make up for the shortcomings of non-membrane-coated nanoparticles. The drug delivery strategy based on the cell membrane is breaking the traditional concept and becoming a promising way of drug delivery. Cell membrane-coated nanoparticles, including the typically utilized source cell membranes, the process of preparation and characterization, and their application in inflammatory diseases and tumors, were reviewed in this paper.
-
Keywords:
- cell membrane /
- nanoparticle /
- inflammatory disease /
- tumor
-
-
[1] FANG R H, KROLL A V, GAO W, et al. Cell membrane coating nanotechnology[J]. Adv Mater, 2018, 30(23): e1706759. doi: 10.1002/adma.201706759
[2] FANG R H, JIANG Y, FANG J C, et al. Cell membrane-derived nanomaterials for biomedical applications[J]. Biomaterials, 2017, 128: 69-83. doi: 10.1016/j.biomaterials.2017.02.041
[3] ZHANG M, DU Y, WANG S, et al. A review of biomimetic nanoparticle drug delivery systems based on cell membranes[J]. Drug Des Devel Ther, 2020, 14: 5495-5503. doi: 10.2147/DDDT.S282368
[4] XIA Q, ZHANG Y, LI Z, et al. Red blood cell membrane-camouflaged nanoparticles: a novel drug delivery system for antitumor application[J]. Acta Pharm Sin B, 2019, 9(4): 675-689. doi: 10.1016/j.apsb.2019.01.011
[5] HAN Y, ZHAO R, XU F. Neutrophil-based delivery systems for nanotherapeutics[J]. Small, 2018, 14(42): e1801674. doi: 10.1002/smll.201801674
[6] REN Y, MIAO C, TANG L, et al. Homotypic cancer cell membranes camouflaged nanoparticles for targeting drug delivery and enhanced chemo-photothermal therapy of glioma[J]. Pharmaceuticals (Basel), 2022, 15(2): 157. doi: 10.3390/ph15020157
[7] KUNDE S S, WAIRKAR S. Platelet membrane camouflaged nanoparticles: Biomimetic architecture for targeted therapy[J]. Int J Pharm, 2021, 598: 120395. doi: 10.1016/j.ijpharm.2021.120395
[8] WU X, LI Y, RAZA F, et al. Red blood cell membrane-camouflaged tedizolid phosphate-loaded PLGA nanoparticles for bacterial-infection therapy[J]. Pharmaceutics, 2021, 13(1): 99. doi: 10.3390/pharmaceutics13010099
[9] LUK B T, ZHANG L. Cell membrane-camouflaged nanoparticles for drug delivery[J]. J Control Release, 2015, 220(pt b): 600-607.
[10] WANG H, LIU Y, HE R, et al. Cell membrane biomimetic nanoparticles for inflammation and cancer targeting in drug delivery[J]. Biomater Sci, 2020, 8(2): 552-568. doi: 10.1039/C9BM01392J
[11] BELHADJ Z, HE B, DENG H L, et al. A combined "eat me/don't eat me" strategy based on extracellular vesicles for anticancer nanomedicine[J]. J Extracell Vesicles, 2020, 9(1): 1806444. doi: 10.1080/20013078.2020.1806444
[12] XU C H, YE P J, ZHOU Y C, et al. Cell membrane-camouflaged nanoparticles as drug carriers for cancer therapy[J]. Acta Biomater, 2020, 105: 1-14. doi: 10.1016/j.actbio.2020.01.036
[13] ZOU S, WANG B, WANG C, et al. Cell membrane-coated nanoparticles: research advances[J]. Nanomedicine: Lond, 2020, 15(6): 625-641. doi: 10.2217/nnm-2019-0388
[14] 杨咏琪, 李洪亮, 梁景岩. 纳米仿生技术在动脉粥样硬化中的应用研究进展[J]. 实用临床医药杂志, 2022, 26(10): 130-134. https://www.cnki.com.cn/Article/CJFDTOTAL-XYZL202210028.htm [15] LIU J, REN L, LI S, et al. The biology, function, and applications of exosomes in cancer[J]. Acta Pharm Sin B, 2021, 11(9): 2783-2797. doi: 10.1016/j.apsb.2021.01.001
[16] ZHEN X, CHENG P, PU K. Recent advances in cell membrane-camouflaged nanoparticles for cancer phototherapy[J]. Small, 2019, 15(1): e1804105. doi: 10.1002/smll.201804105
[17] OROOJALIAN F, BEYGI M, BARADARAN B, et al. Immune cell membrane-coated biomimetic nanoparticles for targeted cancer therapy[J]. Small, 2021, 17(12): e2006484. doi: 10.1002/smll.202006484
[18] GAO J, DONG X, SU Y, et al. Human neutrophil membrane-derived nanovesicles as a drug delivery platform for improved therapy of infectious diseases[J]. Acta Biomater, 2021, 123: 354-363. doi: 10.1016/j.actbio.2021.01.020
[19] YE S F, WANG F F, FAN Z X, et al. Light/pH-triggered biomimetic red blood cell membranes camouflaged small molecular drug assemblies for imaging-guided combinational chemo-photothermal therapy[J]. ACS Appl Mater Interfaces, 2019, 11(17): 15262-15275. doi: 10.1021/acsami.9b00897
[20] CHU D, GAO J, WANG Z. Neutrophil-mediated delivery of therapeutic nanoparticles across blood vessel barrier for treatment of inflammation and infection[J]. ACS Nano, 2015, 9(12): 11800-11811. doi: 10.1021/acsnano.5b05583
[21] SPITE M, NORLING L V, SUMMERS L, et al. Resolvin D2 is a potent regulator of leukocytes and controls microbial Sepsis[J]. Nature, 2009, 461(7268): 1287-1291. doi: 10.1038/nature08541
[22] DONG X Y, GAO J, ZHANG C Y, et al. Neutrophil membrane-derived nanovesicles alleviate inflammation to protect mouse brain injury from ischemic stroke[J]. ACS Nano, 2019, 13(2): 1272-1283.
[23] WANG Y, WANG Y, LI S, et al. Functionalized nanoparticles with monocyte membranes and rapamycin achieve synergistic chemoimmunotherapy for reperfusion-induced injury in ischemic stroke[J]. J Nanobiotechnology, 2021, 19(1): 331. doi: 10.1186/s12951-021-01067-0
[24] ZHOU X, CAO X, TU H, et al. Inflammation-targeted delivery of celastrol via neutrophil membrane-coated nanoparticles in the management of acute pancreatitis[J]. Mol Pharm, 2019, 16(3): 1397-1405. doi: 10.1021/acs.molpharmaceut.8b01342
[25] ZHAO Y Z, ZHUGE D L, TONG M Q, et al. Ulcerative colitis-specific delivery of keratinocyte growth factor by neutrophils-simulated liposomes facilitates the morphologic and functional recovery of the damaged colon through alleviating the inflammation[J]. J Control Release, 2019, 299: 90-106. doi: 10.1016/j.jconrel.2019.02.034
[26] 闻君侠, 王瑾, 江彬锋, 等. M2型巨噬细胞来源的外泌体对类风湿关节炎小鼠的作用及其机制研究[J]. 中国现代医学杂志, 2021, 31(23): 30-37. https://www.cnki.com.cn/Article/CJFDTOTAL-ZXDY202123006.htm [27] ZHANG Q, DEHAINI D, ZHANG Y, et al. Neutrophil membrane-coated nanoparticles inhibit synovial inflammation and alleviate joint damage in inflammatory arthritis[J]. Nat Nanotechnol, 2018, 13(12): 1182-1190. doi: 10.1038/s41565-018-0254-4
[28] YANG L, ZANG G C, LI J W, et al. Cell-derived biomimetic nanoparticles as a novel drug delivery system for atherosclerosis: predecessors and perspectives[J]. Regen Biomater, 2020, 7(4): 349-358. doi: 10.1093/rb/rbaa019
[29] SONG Y, HUANG Z, LIU X, et al. Platelet membrane-coated nanoparticle-mediated targeting delivery of Rapamycin blocks atherosclerotic plaque development and stabilizes plaque in apolipoprotein E-deficient (ApoE-/-) mice[J]. Nanomedicine, 2019, 15(1): 13-24. doi: 10.1016/j.nano.2018.08.002
[30] HU C M, FANG R H, WANG K C, et al. Nanoparticle biointerfacing by platelet membrane cloaking[J]. Nature, 2015, 526(7571): 118-121. doi: 10.1038/nature15373
[31] PARK J, CHOI Y, CHANG H, et al. Alliance with EPR effect: combined strategies to improve the EPR effect in the tumor microenvironment[J]. Theranostics, 2019, 9(26): 8073-8090. doi: 10.7150/thno.37198
[32] GARRIDO-CASTRO A C, LIN N U, POLYAK K. Insights into molecular classifications of triple-negative breast cancer: improving patient selection for treatment[J]. Cancer Discov, 2019, 9(2): 176-198. doi: 10.1158/2159-8290.CD-18-1177
[33] HUANG J, LAI W, WANG Q, et al. Effective triple-negative breast cancer targeted treatment using iRGD-modified RBC membrane-camouflaged nanoparticles[J]. Int J Nanomedicine, 2021, 16: 7497-7515. doi: 10.2147/IJN.S321071
[34] FU Q, LV P, CHEN Z, et al. Programmed co-delivery of paclitaxel and doxorubicin boosted by camouflaging with erythrocyte membrane[J]. Nanoscale, 2015, 7(9): 4020-4030. doi: 10.1039/C4NR07027E
[35] CHI C L, LI F W, LIU H B, et al. Docetaxel-loaded biomimetic nanoparticles for targeted lung cancer therapy in vivo[J]. J Nanoparticle Res, 2019, 21(7): 1-10.
[36] SURYAPRAKASH S, LAO Y H, CHO H Y, et al. Engineered mesenchymal stem cell/nanomedicine spheroid as an active drug delivery platform for combinational glioblastoma therapy[J]. Nano Lett, 2019, 19(3): 1701-1705. doi: 10.1021/acs.nanolett.8b04697
[37] XUE J, ZHAO Z, ZHANG L, et al. Neutrophil-mediated anticancer drug delivery for suppression of postoperative malignant glioma recurrence[J]. Nat Nanotechnol, 2017, 12(7): 692-700. doi: 10.1038/nnano.2017.54
[38] CAO X, HU Y, LUO S, et al. Neutrophil-mimicking therapeutic nanoparticles for targeted chemotherapy of pancreatic carcinoma[J]. Acta Pharm Sin B, 2019, 9(3): 575-589. doi: 10.1016/j.apsb.2018.12.009
[39] ZHOU X, YU R, CAO X, et al. Bio-mimicking nanoparticles for targeted therapy of malignant melanoma[J]. J Biomed Nanotechnol, 2019, 15(5): 993-1004. doi: 10.1166/jbn.2019.2739
[40] XU P, ZUO H, CHEN B, et al. Doxorubicin-loaded platelets as a smart drug delivery system: an improved therapy for lymphoma[J]. Sci Rep, 2017, 7: 42632. doi: 10.1038/srep42632
[41] CHENG S, XU C, JIN Y, et al. Artificial mini dendritic cells boost T cell-based immunotherapy for ovarian cancer[J]. Adv Sci: Weinh, 2020, 7(7): 1903301. doi: 10.1002/advs.201903301
[42] GUO Y Y, WANG D, SONG Q L, et al. Erythrocyte membrane-enveloped polymeric nanoparticles as nanovaccine for induction of antitumor immunity against melanoma[J]. ACS Nano, 2015, 9(7): 6918-6933.
-
期刊类型引用(10)
1. 赵婷婷,韩玮. 针对性护理对慢性胃溃疡合并高血压患者的效果观察. 贵州医药. 2024(02): 304-305 . 百度学术
2. 洪丹妮,叶艳. 电子病床倾斜角度对消化内科患者舒适度的影响. 医疗装备. 2024(05): 118-120 . 百度学术
3. 杨照平. 云南白药辅治脑出血后应激性胃溃疡临床观察. 实用中医药杂志. 2024(06): 1096-1099 . 百度学术
4. 段小兵,王国涛,王冠军,胡国超. 血清高迁移率族蛋白Bl、白细胞介素-6与高血压性脑出血患者神经内镜微创术后神经功能及预后的关系. 成都医学院学报. 2024(04): 674-678 . 百度学术
5. 王攀,曾群. 中老年女性脑出血患者合并胃肠功能紊乱的多因素分析预测模型构建. 中国妇幼保健. 2024(20): 4045-4048 . 百度学术
6. 刘春军,严方方,杨哲,王宝锋. 瑞巴派特联合莫沙必利治疗应激性胃溃疡的效果分析. 中国实用医刊. 2024(23): 91-93 . 百度学术
7. 徐微,林小花,刘媛,何雪云,徐建光. 甘海胃康胶囊联合西药治疗气滞型老年胃溃疡临床研究. 新中医. 2023(17): 112-116 . 百度学术
8. 王磊,夏岩,张灯亮. 高血压脑出血患者术后出现消化道应激性溃疡出血的影响因素分析. 现代医学. 2023(10): 1464-1469 . 百度学术
9. 巩丹丹,马兴好. 高能量密度肠内营养支持对应激性胃溃疡患者胃粘膜修复的影响. 中国食物与营养. 2022(08): 53-56+62 . 百度学术
10. 田永建,姜伟峰,刘芳. 消化内镜联合瑞巴派特在胃溃疡出血中应用价值分析. 疾病监测与控制. 2022(05): 383-386 . 百度学术
其他类型引用(1)
计量
- 文章访问数: 248
- HTML全文浏览量: 198
- PDF下载量: 25
- 被引次数: 11